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Note that the solutions given below are to the problems of chapter 11, as revised
according to the corrections on this website.

1. Construct a sorites argument for each of the predicates mentioned in 11.2.3.

‘is tall’

M0 = ‘Barry is tall at 200cm’. If someone is tall, they are still tall if they
become 1 millimeter shorter. So, M1 = ‘Barry is tall at 199cm 9mm.’ And
so on. The argument is then of the same form as that of 11.2.4, and continues
until Barry’s hight is, for instance, 50cms, at which point he is certainly not tall.

‘is drunk’

M0 = ‘Barry is drunk with a Blood Alcohol Content of 0.40%.’ (Assuming
Barry is not dead from alcohol poisoning.) If someone is drunk, they are still
drunk if their BAC reduces 0.001%. So, M1 = ‘Barry is drunk with a BAC of
0.399%.’ And so on. The argument is then of the same form as that of 11.2.4,
and continues until Barry’s BAC is 0.001%, at which point he is, intuitively, not
drunk.

‘is red’

M0 = ‘Barry is red when the radiant energy reflected from him is of a wave-
length of 700 nanometers.’ If something is red, than it is still red when the
wavelength of the radiant energy is changed by 0.1 of a nanometer. So M1 =
‘Barry is red when the radiant energy reflected from him is of a wavelength of
699.9 nanometers.’ And so on. The argument is then of the same form as that
of 11.2.4 and continues until the wavelength of the light reflected from Barry is
under 600 nanometers, at which point he is, intuitively, not red.

‘appears red’
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M0 = ‘Barry appears red when he looks red to all human observers.’ If some-
thing appears red, then it still appears red even if one observer disagrees. So,
M1 = ‘Barry appears red when he looks red to all observers, except one’. The
argument is then of the same form as that of 11.2.4, and continues until Barry
doesn’t look red to all but one observer, at which point he does not, intuitively,
appear red. The argument could perhaps be strengthened by an appeal to all
possible observers.

‘is a heap of sand’

M0 = ‘x is a heap of sand when it contains 10,000 grains.’ If something is a
heap of sand, then it is still a heap of sand if a grain is removed. So M1 = ‘x
is a heap of sand when it contains 9999 grains.’ And so on. The argument is
then of the same form as that of 11.2.4 and continues until x contains 1 grain,
at which point it is, intuitively, not a heap of sand.

‘is dead’

M0 = ‘Barry is not dead at t1.’ Dying takes longer than one nanosecond, so if
someone is not dead at a time, they are not dead one nanosecond later. Thus
M1 = ‘Barry is not dead at t1 + one nanosecond.’ And so on. The argument is
then of the same form as that of 11.2.4, and continues until a point in time at
which Barry is decomposing in his coffin, and so is, intuitively, dead.

2. Check the details omitted in 11.4.4, 11.4.5, 11.5.3, 11.5.9, 11.7.5, and 11.7.10.

11.4.4: Show that if x ≤ y then z � x ≤ z � y

Suppose that x ≤ y (and so that −y ≤ −x): If z ≤ y then z � y = 1, so the
result follows. If x ≤ y < z, then z � x = 1− (z − x) ≤ 1− (z − y) = z � y.

11.4.5 : Check that if we restrict ourselves to just the values 1, 0.5, and 0, then
the truth functions are exactly the same as those of Ł3, thinking of→ as ⊃ and
0.5 as i.

For this it will suffice to show that the restricted truth tables for the above
continuum-valued logic match to the truth tables for  L3. Compare the following
with the tables in 7.3.2 and 7.3.8.

f¬
1 0

0.5 0.5
0 1
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f∧ 1 0.5 0
1 1 0.5 0

0.5 0.5 0.5 0
0 0 0 0

f∨ 1 0.5 0
1 1 1 1

0.5 1 0.5 0.5
0 1 0.5 0

f→ 1 0.5 0
1 1 0.5 0

0.5 1 1 0.5
0 1 1 1

11.5.3 Show that in every interpretation, each of the axioms of CK takes the
value 1 in Łℵ, and that the rules preserve this property.

A2, R1, A5, A9 and A15 have already been shown.

A1: A→ A

a� a = 1, so A1 takes the value 1.

A3: (A ∧B)→ A (and (A ∧B)→ B)

Min(a, b) ≤ a (and Min(a, b)) ≤ b))

Hence, ν(A ∧B) ≤ ν(A), so ν((A ∧B)→ A) = 1. (Similarly for B.)

A4: A ∧ (B ∨ C)→ ((A ∧B) ∨ (A ∧ C))

There are six cases: (i) a ≤ b ≤ c (ii) a ≤ c ≤ b (iii) b ≤ a ≤ c (iv) b ≤ c ≤ a
(v) c ≤ a ≤ b (vi) c ≤ b ≤ a. Since b and c are symmetrically placed in the
formula, we can ignore cases (ii), (v) and (vi). Elementary checking of the other
three cases shows that:

Min(a,Max(b, c)) ≤Max(Min(a, b)(Min(a, c)))

Hence, ν(A ∧ (B ∨ C)→ ((A ∧B) ∨ (A ∧ C))) = 1.
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A6: ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

There are six cases: (i) a ≤ b ≤ c (ii) a ≤ c ≤ b (iii) b ≤ a ≤ c (iv) b ≤ c ≤ a
(v) c ≤ a ≤ b (vi) c ≤ b ≤ a. Since a and b are symmetrically placed in the
formula, we can ignore cases (iii), (iv) and (vi). Checking the other three cases
shows that:

Min(a� c, b� c) ≤ (Max(a, b)� c)

Case (i) is trivial. For case (ii): a	 c = 1. Hence Min(a� c, b� c) = b	 c.
This is the same as Max(a, b) � c. For case (v): a ≤ b, so 1 − b ≤ 1 − a and
1− b+ c ≤ 1− a+ c . So b	 c ≤ a	 c and Min(a� c, b� c) = b	 c . This is
the same as Max(a, b)� c.

A7: ¬¬A→ A

1− (1− a) = a

The result follows.

A8: (A→ ¬B)→ (B → ¬A)

There are two cases (i) a + b ≤ 1 and a + b ≥ 1. We wish to show that, in
each case, a� (1− b) ≤ b� (1− a). The result follows.

In case (i), b ≤ 1 − a, so b 	 (1 − a) = 1, and the result follows. In the
second case, a ≥ 1 − b. So a 	 (1 − b) = 1 − a + 1 − b = 2 − a − b. Similarly,
b	 (1− a) = 1− b+ 1− a = 2− a− b. So a� (1− b) ≤ b� (1− a).

A12: A→ ((A→ B)→ B)

Consider a� ((a� b)� b). This has value 1. For:

If a ≤ b, then a�b = 1, (a�b)�b = 1−1+b = b so a�((a�b)�b) = a�b = 1.

If, on the other hand, b ≤ a, then a� b = 1− a+ b, which is greater than b.
So ((a� b)� b) = 1− (1− a+ b) + b = a. Thus, a� ((a� b)� b) = a� a = 1.

The result follows.

R2 A,B ` A ∧B
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If a = 1 and b = 1 then Min(a, b) = 1. The result follows.

11.5.9 Prove that (A ∨B)→ ((A→ B)→ B) from the axioms of 11.5.2

(1) A→ ((A→ B)→ B) A12
(2) B → ((A→ B)→ B) A15
(3) (A→ ((A→ B)→ B)) ∧ (B → ((A→ B)→ B)) (1), (2), R2
(4) ((A→ ((A→ B)→ B)) ∧ (B → ((A→ B)→ B)))→

((A ∨B)→ ((A→ B)→ B)) A6
(5) (A ∨B)→ ((A→ B)→ B) (3), (4), R1

11.6.5 Check that the following hold in Ł:

A � B → A

We show that ν(A → (B → A)) = 1. Suppose that a � (b � a) 6= 1. Then
a > (b� a). So, b > a, and a > 1− b+ a, which is impossible.

¬A � A→ B

The proof is similar.

(A ∧B)→ C � (A→ C) ∨ (B → C)

We show that Min(a, b)� c) ≤Max(a� c, b� c). The result follows.

If a ≤ b, then Min(a, b) � c = a � c. By 11.4.4 b � c ≤ a � c; so
Max(a� c, b� c) = a� c, as well.

If b ≤ a the argument is symmetric.

¬(A→ B) � A

We show that 1− (a� b) ≤ a. The result follows.

If a ≤ b then a� b = 1, and 1− (a� b) = 0 ≤ a.

If b ≤ a then 1− (a� b) = 1− (1− a+ b) = a− b ≤ a.

11.7.5 Show that the axioms of B are logically true in FB, and all the rules of
B preserve this property.

A2, A5, R1 and R4 have already been shown.
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A1: A→ A

At any world, x, of an interpretation, ax � ax = 1. So for every normal
world, w, Glb{ax � ax : Rwxx} = 1.

A3: (A ∧B)→ A (and (A ∧B)→ B).

At any world of an interpretation, x, (a ∧ b)x ≤ ax; so (a ∧ b)x � ax = 1.
Thus, for every normal world, w, Glb{(a ∧ b)x � ax;Rwxx} = 1.

A4: A ∧ (B ∨ C)→ ((A ∧B) ∨ (A ∧ C))

For A4 in 11.5.3, we saw that: Min(a,Max(b, c)) ≤Max(Min(a, b)(Min(a, c))).
Hence, for every normal world w, Glb{ax∧(b∨c)x�(a∧b)x∨(a∧c)x : Rwxx} = 1.

A6: ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

Suppose that in an interpretation Rxyz. Suppose that ay ≤ by. Then by
11.4.4 by 	 cz ≤ ay 	 cz. Moreover, (a ∨ b)y = by, so (a ∨ b)y 	 cz = by 	 cz =
Min{ay 	 cz, by 	 cz}. If by ≤ ay, on the other hand, the same result holds by
a similar argument. Hence (cf. 11.7.6):

((a→ c) ∧ (b→ c))x = Min((a→ c)x, (b→ c)x)
= Min(Glb{ay � cz : Rxyz}, Glb{by � cz : Rxyz})
≤ Glb{Min(ay � cz, by � cz : Rxyz}
=Glb{(a ∨ b)y � cz : Rxyz}
= ((a ∨ b)→ c)x

Hence for normal w, Glb{((a→ c)∧ (b→ c))x� ((a∨ b)→ c)x : Rwxx} ≤ 1
as required.

A7: ¬¬A→ A

At any world of an interpretation, 1− (1− ax) = ax. So if w is any mormal
world, (¬¬a→ a)w = Glb{ax � ax : Rwxx} = 1, as required.

R2 A,B ` A ∧B

Suppose that w is normal, and that aw and bw are both 1. Then,Min(aw, bw) =
1.

R3 A→ B ` (C → A)→ (C → B)

Suppose that w is normal, and that (a → b)w = 1. Then for all y, ay ≤ by.
It follows by 11.4.4 that cz 	 ay ≤ cz 	 by. Hence, Glb{cz 	 ay : Rxyz} ≤
Glb{cz	by : Rxyz}. That is, (c→ a)x ≤ (c→ b)x. Hence, Glb{(c→ a)x	(c→
b)x : Rwxx} = 1, as required.
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R5 A→ ¬B ` B → ¬A

Suppose that w is a normal world in an interpretation. In A8 of 11.5.3, we
saw that a�(1−b) ≤ b�(1−a). So for any world x, ax�(1−b)x ≤ bx�(1−a)x.
Hence, Glb{ax � (1− b)x : Rwxx} ≤ Glb{b� (1− a)x : Rwxx}, as required.

11.7.10 Show that p→ q � ¬q → ¬p holds in FB.

Take any interpretation and any world x of that interpretation. If px ≤ qx,
then 1 − qx ≤ 1 − px, so if Glb{px � qx : Rwxx} = 1, Glb{1 − qx � 1 − px :
Rwxx} = 1.

3. Show the following in  Lℵ (either by giving a deduction or by showing that
whenever the premises have the value 1, so does the conclusion):

(a) � (A→ B) ∨ (B → A)

In any interpretation, either the value of A is greater than or equal to the
value of B or vice versa. Hence, one of the disjuncts must take the value 1, and
the value of the whole sentence is 1 also.

(b) � (A→ (B → C))→ (B → (A→ C))

(i) Suppose that a ≤ c. Then the value of the consequent is 1, as is the value
of the whole conditional.

(ii) So suppose that c ≤ a. Then the value of A→ C is 1− a+ c.

(iia) Suppose that b ≤ 1 − a + c. Then the value of the consequent is 1, as
is the value of the whole conditional.

(iib) So suppose that (α) b ≥ 1 − a + c. Then the value of the consequent
is 1 − b + (1 − a + c) = 2 − a − b + c. By (α), b ≥ c, so the value of B → C is
1− b+ c. And by (α) again, a ≥ 1− b+ c. Hence, the value of the antecedent
is 1− a+ 1− b+ c = 2− a− b− c. So the antecedent and consequent have the
same value, and the conditonal has value 1.

(d) A→ B � ¬B → ¬A

Suppose that in an interpretation ν(A → B) = 1. Then ν(A) ≤ ν(B).
Hence, 1− ν(B) ≤ 1− ν(A). That is, ν(¬B → ¬A) = 1.

4. By constructing appropriate counter-models, show the following in  Lℵ:

(a) 2 p ∨ ¬p
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Suppose v(p) = 0.5, then the the value of the formula is also 0.5.

(b) 2 (p ∧ (¬p ∨ q))→ q

Suppose v(p) = 0.5 and v(q) = 0.3. Then v(¬p ∨ q) = 0.5, and v(p ∧ (¬p ∨
q)) = 0.5, but v((p ∧ (¬p ∨ q))→ q) = 0.8.

(c) 2 ((p→ q)→ q)→ q

Suppose v(p) = 0.5 and v(q) = 0.4. Then v(p→ q) = 0.9, v((p→ q)→ q) =
0.5 and v(((p→ q)→ q)→ q) = 0.9.

(d) 0 ((p→ q) ∧ (q → r))→ (p→ r)

Suppose v(p) = 1, v(q) = 0.8 and v(r) = 0.5. Then v(p → q) = 0.8,
v(q → r) = 0.7, and the value of the conjunction of the two is 0.7. However
v(p→ r) = 0.5, so the value of the conditional is 0.8.

(e) 0 (p→ ¬p)→ ¬p

Suppose v(p) = 0.7, then v(¬p) = 0.3, v(p→ ¬p) = 0.6, and v((p→ ¬p)→
¬p) = 0.7.

5. Show the following in FB:

(a) A→ B,A→ C |= A→ (B ∧ C)

Consider any interpretation, and normal world, w. As proved in 11.7.6:

Min{(a→ b)x, (a→ c)x} ≤ ((a→ (b ∧ c))x.

Hence:

Glb{Min{(a→ b)x, (a→ c)x : Rwxx} ≤ Glb{((a→ (b ∧ c))x : Rwxx}
Min{Glb{(a→ b)x : Rwxx}, Glb{(a→ c)x : Rwxx} ≤ Glb{((a→ (b ∧ c))x : Rwxx}

Min((a→ b)w, (a→ c)w) ≤ (a→ (b ∧ c))w

As required.

(b) A→ C,B → C |= (A ∨B)→ C

Consider any interpretation, and normal world, w. As we saw in connection with
A6 of 11.7.5:

Min((a→ c)x, (b→ c)x) ≤ ((a ∨ b)→ c)w
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Hence:

Glb{Min((a→ b)x, (a→ c)x) : Rwxx} ≤ Glb{((a ∨ b)→ c)x : Rwxx}
Min(Glb{(a→ b)x : Rwxx}, Glb{(a→ c)x : Rwxx}) ≤ Glb{((a ∨ b)→ c)) : Rwxx}

Min((a→ b)w, (a→ c)w) ≤ ((a ∨ b)→ c)w)

As required.

(c) p→ q, q → r 2 p→ r

Consider an interpretation with one (normal) world, w, such that vw(p) = 0.7,
vw(q) = 0.5, and vw(r) = 0.3 Then vw(p → q) = 0.8, vw(q → r) = 0.8, so the
Glb of the premises is 0.8. However vw(p→ r) = 0.6..

6. Give the semantics of the ceteris paribus clause for fuzzy relevant logic (see
11.7.11), and investigate the properties of enthymematic conditionals.

We explain how to formulate the semantics for FB. Stronger relevant logics
are obtained by adding constraints on the ternary R. Details are left for the
reader.

For the most basic fuzzy relevant ceteris paribus logic FB>, we add a ceteris
paribus conditional > to the language. Let I be an interpretation for FB. To
obtain a semantics for the extended language, we add a collection of accessibility
relations, {RA : A is a formula of the (extended) language} to I. The relations
are arbitrary. The truth conditions for the old connectives are as for FB. The
conditions for > are:

• vw(A > B) = Glb{νw′(B) : wRAw
′}

The definition of validity is as before.
If all interpretations are two-valued, these semantics are those for the rele-

vant ceteris paribus logic CB of 10.7. Hence, the logic is a sub-logic of CB . (It
is a proper sub-logic for exactly the same reason that FB is a proper sub-logic
of B (11.7.8).) In particular, we have the following:

• p > q, q > r 2 p > r

• p > r 2 (p ∧ q) > r

• p > q 2 ¬q > ¬r

In FB the first of these also fails when ‘>’ is replaced by ‘→’. (See Ex. 5(a).)
But the other two hold. Details are left as an exercise.

One may strengthen the logic by adding constraints on the family of access-
ability relations. Further details are left to the reader.

8. A notion of semantic consequence, �, is said to be compact just if whenever
Σ � A there is some finite Σ

′ ⊆ Σ such that Σ
′
� A. Let ` be the deducibility
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relationship of any axiom system. Since proofs are finite, then whenever Σ ` A
there is some finite Σ

′ ⊆ Σ such that Σ
′ ` A. Show that if ` is sound and

complete with respect to �, � is compact.

If ` is sound and complete with respect to �, then Σ ` A iff Σ � A. Suppose
that � were not compact. Then there is some formula such that Σ � A and it
is not the case that there is a finite Σ

′ ⊆ Σ such that Σ′ � A. But since Σ � A,
Σ ` A. Thus there is some finite Σ

′ ⊆ Σ such that Σ
′ ` A, and so Σ

′
� A.

Hence, � is compact.

9. Let A ∗ B be ¬A → B. Show that (α) given any interpretation of  Lℵ,
v(A ∗ B) = Min(1, v(A) + v(B)). Let A1 be A, and An+1 be An ∗ A. Show
that (β) ν(An) = Min(1, n.v(A)). Let Σ = {pn → q : n ≥ 1}. Show that (γ)
in  Lℵ,Σ � q. (Hint: If v(p) > 0, then we can make n.v(p) > 1 by taking n to
be large enough.) Show that (δ) if Σ

′
is any finite subset of Σ, Σ

′ 2 q. (Hint:
there must be a largest n such that pn → q is in Σ

′
. Choose a v such that

v(p) < 1/n.) Infer, from the last question that (ε)  Lℵ has no axiom system that
is sound and complete (with respect to arbitrary sets of premises).

(α) v(A ∗B) = Min(1, v(A) + v(B)).

Proof: v(¬A → B) = (1 − a) � b. If 1 − a ≤ b then ν(¬A → B) = 1, and
1 ≤ a + b. Hence, v(A ∗ B) = Min(1, a + b). If 1 − a ≥ b then ν(¬A → B) =
1− (1− a) + b = a+ b, and 1 ≥ a+ b. Hence, v(A ∗B) = Min(1, a+ b).

(β) v(An) = Min(1, n.v(A)).

Proof : The proof is by induction on n. If n = 1 the result is trivial. Suppose
that the result holds for n. Then by part (α), ν(An+1) = Min(1,Min(1, n.ν(A))+
ν(A))) = Min(1, (n+ 1).ν(A)).

(γ) Σ � q.

Proof: Suppose that ν gives every member of Σ the value 1. Suppose that
ν(p) = 0. Then the value of the every antecedent of a formula in Σ is 1 (by
part (β)). Hence, the value of every member of Σ is ν(q). Hence, ν(q) = 1.
If ν(p) > 0 then for some n, ν(pn) = 1 (by part (β)). Since pn → q ∈ Σ ,
ν(q) = 1. Hence Σ � q.

(δ) For no finite Σ′ ⊆ Σ, Σ′ � q.

Proof: If Σ′ is finite, there must be a greatest n such that pn → q ∈ Σ′. Take
an interpretation ν such that ν(p) = ε < 1/n. Let ν(q) = δ, where nε < δ < 1.
Then for every m ≤ n, ν(pm) < δ (by part (β)). Then for every pm → q ∈ Σ′,
ν(pm → q) = 1. Hence, Σ′ 2 q.
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(ε)  Lℵ is not compact.

Proof: The result follows from parts (δ) and (ε) by question 8.

10. *Check the details omitted in 11.7a.4, 11.7a.5, 11.7a.7, 11.7a.9, 11.7a.10
(soundness only), 11.7a.11, 11.7a.12 (soundness only), 11.7a.13 and 11.7a.14
(soundness only).

Prefix notation is not easy to read. We will therefore write, f→(x, y) as x→ y,
and so on. We will also write ◦ as •, and 0 as 0. This makes all connectives and
logical constants ambiguous. The style of the variable disambiguates.

x → y is, by definition, Lub{z : x • z ≤ y}. Since • is continuous, the least
upper bound is achieved (11.7a.4). That is, x→ y =Max{z : x•z ≤ y}. Hence,
x • (x→ y) ≤ y.

11.7a.4 Show that the definition x→ y = Lub{z : x•z ≤ y} implies: (1) x•y ≤ z
iff y ≤ x→ z. (2) x→ y = 1 iff x ≤ y.

1. L to R: If x • y ≤ z then y ≤Lub{y : x • y ≤ z} = x→ z
1. R to L: If y ≤ x→ z then y ≤ Lub{y : x • y ≤ z}. So x • y ≤ z.

2. L to R: If x → y = 1 then 1 = Max{z : x • z ≤ y}. So x • 1 ≤ y, i. e.,
x ≤ y.

2. R to L: If x ≤ y then x • 1 ≤ y. Hence 1 = Lub{z : x • z ≤ y}, i. e.,
x→ y = 1.

We note a useful corollary: 1→ y = y. Proof : Since 1•(1→ y) ≤ y, 1→ y ≤ y.
But y • 1 ≤ y. So by (1), y ≤ 1→ y.

11.7a.5 Show that 1: x ∧ y = Min(x, y), and 2: x ∨ y = Max(x, y).

1: x • (x → y) = Min(x, y). If x ≤ y then Min(x, y) = x, and x → y = 1.
The result follows. Suppose that y ≤ x. Then Min(x, y) = y. Consider z • x.
This is a continuous function (of both arguments). 0 • x = 0 and 1z • x = x.
Hence (by the Mean-Value Theorem) for some z, z • x = y. The maximal such
z is x→ y. Hence (x→ y) • x = x • (x→ y) = x.

2: We have to show that Max(x, y) = ((x → y) → y) ∧ ((y → x) → x).
Suppose that x ≤ y. (The case for y ≤ x is symmetric.) Then x → y = 1. So
((x→ y)→ y) = 1→ y = y. Moreover, since y • (y → x) ≤ x, y ≤ (y → x) • x.
Hence ((x→ y)→ y) ∧ ((y → x)→ x) = y.
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11.7a.7 Show that any theorem of BL is logically true in all L(•).

We show that all the axioms of BL take the value 1, and all the rules preserve
this property. Given an evaluation, let a be ν(A), etc. There is only one rule,
modus ponens: since a • (a → b) ≤ b, if a = 1 and a → b = 1 then b = 1. Now
the axioms:

1. (A→ B)→ ((B → C)→ (A→ C).

a • (a→ b) ≤ b
a • (a→ b) • (b→ c) ≤ b • (b→ c) ≤ c
(a→ b) • (b→ c) ≤ a→ c
(a→ b) ≤ (b→ c)→ (a→ c)
1 ≤ (a→ b)→ ((b→ c)→ (a→ c))

2. (A •B)→ A.

a ≤ 1
a • b ≤ 1 • b = b
1 ≤ a • b→ b

3. (A •B)→ (B •A).

a • b ≤ b • a
1 ≤ (a • b)→ (b • a)

4. (A • (A→ B))→ (B • (B → A)).

a • (a→ b)) = a ∧ b = Min(a, b) = Min(b, a) = b ∧ a = b • (a→ b)
1 ≤(a • (a→ b))→ (b • (b→ a))

5. (A→ (B → C))→ ((A •B)→ C)).

Let x be a→ (b→ c). Then:
x ≤ a→ (b→ c)
x • a ≤ (b→ c)
x • a • b ≤ c
x ≤ (a • b)→ c
1 ≤ x→ ((a • b)→ c)

6. ((A •B)→ C))→ (A→ (B → C))

Let x be (a • b)→ c. Then:
x ≤ (a • b)→ c
x • a • b ≤ c
x • a ≤ b→ c
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x ≤ a→ (b→ c)
1 ≤ x→ (a→ (b→ c))

7. ((A→ B)→ C)→ (((B → A)→ C)→ C)

Either a ≤ b or b ≤ a. That is, either 1 = a → b or 1 = b → a. In the
first case, (a → b) → c = 1 → c = c. But c • ((b → a) → c) ≤ c. Hence
c ≤ ((b → a) → c) → c, as required. In the second case, ((b → a) → c) →
c = (1 → c) → c = c → c = 1. (Since 1 • c ≤ c, 1 ≤ c → c.) Hence,
(a→ b)→ c ≤ ((b→ a)→ c)→ c, as required.

8. 0→ A

0 ≤ a
1 ≤ 0→ a

11.7a.9 The Łukasiewz t-norm, x • y, is Max(0, x + y − 1). Show that (1) if
x ≤ y then x→ y = 1; (2) if x ≥ y then x→ y = 1−x+ y; and (3) ¬x = 1−x.

1. x→ y = Max{z : z • x ≤ y} = Max{z : Max(0, z+ x− 1) ≤ y}. If x ≤ y
this is 1.

2. Suppose, on the other hand, that x ≥ y. x+ z − 1 ≤ y iff z ≤ 1− x+ y.
Hence, Max{z : Max(0, z + x− 1) ≤ y} = 1− x+ y.

3. ¬x = x→ 0 = 1− x+ 0 = 1− x.

11.7a.10 Show that the axiom system for BL plus ¬¬A→ A is sound and with
respect to the Łukasiewicz t-norm.

Since we know that the axiom system for BL is sound with respect to all
t-norms, to check the soundness of the augmented system, all we have to show
is that the new axiom schema is sound for the Łukasiewicz semantics. This we
have already seen in Question 2, 11.5.3, A7.

11.7a.11 The product t-norm, x • y, is the product x.y. Show (1) if x ≤ y then
x→ y = 1; (2) if x > y then x→ y = y/x; (3) if x = 0 then ¬x = 1; and (4) if
x > 0 then ¬x = 0.

1. x→ y = Lub{z : x.z ≤ y}. If x ≤ y, this is obviously 1.
2. If y < x then Lub{z : x.z ≤ y} is clearly y/x.
3. ¬x = x→ 0. If x = 0, this is 1 (by part 1).
4. If x > 0, this is 0/x (by part 2). This is 0.

11.7a.12 Show that the axiom system for BL plus (1) (A ∧ ¬A) → 0 and (2)
¬¬C → (((A•C)→ (B •C))→ (A→ B)) is sound with respect to the product
t-norm.
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Since we know that the axiom system for BL is sound with respect to all
t-norms, to check the soundness of the augmented system, all we have to show
is that the new axiom schemata are sound for the product semantics.

For 1: either a = 0 or ¬a = 0 (by parts 3 and 4 of the previous question).
Hence a ∧ ¬a = 0. The result follows.

For 2: If c = 0, ¬¬c = 0. The result follows. So suppose that c > 0. If a ≤ b
then c.a < c.b. Hence, a • c → b • c = a → b = 1. The result follows. If b < a
then a→ b = b/a. Moreover, b.c < a.c. Hence, a • c→ b • c = b.c/a.c = b/a as
well. Hence (a • c→ b • c)→ (a→ c) = 1.

11.7a.13 The Goedel t-norm, x • y is Min(x, y). Show (1) if x ≤ y then x →
y = 1; (2) if x > y then x → y = y; (3) if x = 0 then ¬x = 1; and (4) if x > 0
then ¬x = 0.

1. x→ y = Lub{z : Min(x, z) ≤ y}. If x ≤ y, this is obviously 1.
2. If y < x then Lub{z : Min(x, z) ≤ y} is clearly y.
3. ¬x = x→ 0. If x = 0, this is 1 (by part 1).
4. If x > 0, this is 0 (by part 2).

11.7a.14 Show that the axiom system for BL plus A → (A • A) and is sound
with respect to the product t-norm.

Since we know that the axiom system for BL is sound with respect to all
t-norms, to check the soundness of the augmented system, all we have to show
is that the new axiom schema is sound for the product semantics.

Since Min(a, a) = a, a→ (a • a) = a→ a = 1.

11. *Show that the Łukasiewicz, product, and Goedel t-norms are t-norms; that
is, that they satisfy the conditions of 11.7a.2.

For the product and Goedel t-norms, this is entirely trivial.
The Łukasiewicz norm, x • y, is Max(0, x + y − 1). All the conditions are

trivial apart from associativity. The argument for this is as follows: (x•y)•z =
Max(0,Max(0, x+y−1)+z−1). This isMax(0, x+y+z−2). For if x+y ≤ 1,
both are 0. If x + y > 1 then Max(0, x + y − 1) + z − 1 = x + y + z − 2. A
similar argument shows that x • (y • z) = Max(0, x+ y + z − 2) as well.

12. *Show that with the Łukasiewicz t-norm x•y may be defined as ¬(x→ ¬y).

We prove this in three steps. In Łukasiewicz logic:

1. ¬¬x = x

2. x→ y = ¬y → ¬x

3. x • y =¬(x→ ¬y)

14



The proofs are as follows:

For1: 1− (1− x) = x

For 2: x → y ≤ (x → 0) → (y → 0) (See proof of Question 10, 11.7a.1,
axiom 1). So x → y ≤ ¬x → ¬y. Similarly, ¬x → ¬y ≤ ¬¬x → ¬¬y = x → y,
by part 1.

For 3: We prove the two halves.

x • (x→ ¬y) ≤ ¬y
x ≤ (x→ ¬y)→ ¬y
x ≤ ¬¬y → ¬(x→ ¬y) (Part 2)
x ≤ y → ¬(x→ ¬y) (Part 1)
x • y ≤ ¬(x→ ¬y)

x ≤ y → (x • y)
x ≤ ¬(x • y)→ ¬y (Part 2)
x • ¬(x • y) ≤ ¬y
¬(x • y) ≤ x→ ¬y
1 ≤ ¬(x • y)→ (x→ ¬y)
1 ≤ ¬(x→ ¬y)→ ¬¬(x • y) (Part 2)
1 ≤ ¬(x→ ¬y)→ (x • y) (Part 1)
¬(x→ ¬y) ≤ x • y

13. *Show that the axiom system for BL plus ¬¬A→ A proves everything that
the axiom system for Ł of 11.5.1 can prove. (Hint: Use the previous question to
formulate BL without •. You will need to prove the substitutivity of equivalents
for BL. This is relatively simple, since the only connective is then →.) Since
that is theoremwise complete, it follows that this axiom system is theoremwise
complete too. (Soundness was already proved in Question 10, 11.7a.10.)

First, given the previous question, we can simply define A•B as ¬(A→ ¬B).
So done, the two axiom systems have the same vocabulary. Next, in the axiom
system of 11.5.1, the last two axioms can be dispensed with, since ∨ and ∧ be
taken as defined. If we can prove the other four axioms, the result follows, since
modus ponens is a rule of BL as well. The axioms are:

1. (A→ B)→ ((B → C)→ (A→ C))

2. A→ (B → A)

3. (A→ ¬B)→ (B → ¬A)

4. ((A→ B)→ B)→ ((B → A)→ A)
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1 is an axiom 1 of BL.

For 2: (A •B)→ A is axiom 2 of BL.The result follows by axiom 6.

For 3 and 4, we need the substitutivity of equivalents: if in BL (plus ¬¬A→
A) ` A → B and ` B → A then ` C(A) → C(B) and ` C(B) → C(A). This
is proved by induction on the complexity of C. The basis case is trivial. Given
that • is defined in terms of ¬ and→, the only connective in the language is→.
Hence, assuming that ` C(A) → C(B) and ` C(B) → C(A) we have to show
that ` (D → C(A)) → (D → C(B)) and ` (C(B) → D) → (C(A) → D). The
second follows from axiom 1. Using axioms 1, 2, and 3, it is easy to establish
that (B → C)→ ((A→ B)→ (A→ C)). The first follows from that. Note that
it follows by modus ponens that if ` A → B and ` B → A then C(A) ` C(B)
and C(B) ` C(A). Call this form of substitutivity SE.

Two more lemmas are useful:

1. ` A→ ¬¬A and ` ¬¬A→ A

2. ` (A→ B)→ (¬B → ¬A) and ` (¬A→ ¬B)→ (B → A)

For 1: the second conjunct is the extra negation axiom. For the first, A • (A→
0) → 0 (axioms 2 and 3). Hence A → ((A → 0) → 0) (axiom 6). For 2: the
first conjunct is an instance of axiom 1, given the definition of ¬. The second
conjunct follows from another instance, ` (¬A→ ¬B)→ (¬¬A→ ¬¬B), given
SE and 1.

Now, for 3: an instance of the first conjunct of 2 is ` (A→ ¬B)→ (¬¬B →
¬A). The result follows by SE and 1.

Finally, for 4:

(¬A • (¬A→ ¬B))→ (¬B • (¬B → ¬A)) (axiom 4)
(¬A • (B → A))→ (¬B • (A→ B)) (SE and 2)
¬(¬B • (A→ B))→ ¬(¬A • (B → A)) (first conjunct of 2)
¬((A→ B) • ¬B)→ ¬((B → A) • ¬A) (axiom 3 and SE)
¬¬((A→ B)→ B)→ ¬¬((B → A)→ A) (Definition of •)
((A→ B)→ B)→ ((B → A)→ A) (SE and 1)
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