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1. Fill in the details left as exercises in 10.3.6, 10.4.6, 10.4a.8, 10.5.5, 10.5.6,
and 10.7.1.

10.3.6: Check that all formulas of the following form are logically valid in B:

(A1) A → A

A → A,−0
r000, r00#0#, r011, r01#1#

A, +1
A,−1
⊗

(A2) A → (A ∨ B)

A → (A ∨ B),−0
r000, r00#0#, r011, r01#1#

A, +1
A ∨ B,−1

A,−1
B,−1
⊗

(A3) (A ∧ B) → A

(A ∧ B) → A,−0
r000, r00#0#, r011, r01#1#

A ∧ B, +1
A,−1
A, +1
B, +1
⊗
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(A4) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)),−0
r000, r00#0#, r011, r01#1#

A ∧ (B ∨ C)), +1
(A ∧ B) ∨ (A ∧ C),−1

A, +1
B ∨ C, +1
A ∧ B,−1
A ∧ C,−1

B, +1

A,−1
⊗

B,−1
⊗

C, +1

A,−1
⊗

B,−1

A,−1
⊗

C,−1
⊗

(A5) ((A → B) ∧ (A → C)) → (A → (B ∧ C))

((A → B) ∧ (A → C)) → (A → (B ∧ C)),−0
r000, r00#0#, r011, r01#1#

(A → B) ∧ (A → C), +1
A → (B ∧ C),−1

A → B, +1
A → C, +1

r123
r022, r02#2#, r033, r03#3#

A, +2
B ∧ C,−3

B,−3

A,−2
⊗

B, +3
⊗

C,−3

A,−2
⊗

C, +3
⊗
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(A6) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

((A → C) ∧ (B → C)) → ((A ∨ B) → C),−0
r000, r00#0#, r011, r01#1#

(A → C) ∧ (B → C), +1
(A ∨ B) → C,−1

A → C, +1
B → C, +1

r123
r022, r02#2#, r033, r03#3#

A ∨ B, +2
C,−3

A, +2

A,−2
⊗

C, +3
⊗

B, +2

B,−2
⊗

C, +3
⊗

(A7) ¬¬A → A

¬¬A → A,−0
r000, r00#0#, r011, r01#1#

¬¬A, +1
A,−1

¬A,−1#

A, +1
⊗

(R1) A, A → B ⊢ B

A, +0
A → B, +0

B,−0
r000, r00#0#

A,−0
⊗

B, +0
⊗

(R2) A, B ⊢ A ∧ B

A, +0
B, +0

A ∧ B,−0
r000, r00#0#

A,−0
⊗

B, +0
⊗
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(R3) A → B ⊢ (C → A) → (C → B)

A → B, +0
(C → A) → (C → B),−0

r000, r00#0#, r011, r01#1#

C → A, +1
C → B,−1

r123
r022, r02#2#, r033, r03#3#

C, +2
B,−3

A,−3

C,−2
⊗

A, +3
⊗

B, +3
⊗

(R4) A → B ⊢ (B → C) → (A → C)

Shown in 10.3.2

(R5) A → ¬B ⊢ B → ¬A

A → ¬B, +0
B → ¬A,−0

r000, r00#0#, r011, r01#1#

B, +1
¬A,−1
A, +1#

A,−1#

⊗
¬B, +1#

B,−1
⊗

Check that all of the above except A5, A6, R3 and R4 hold in N∗.

(A1) A → A

A → A,−0
A, +1
A,−1
⊗
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(A2) A → (A ∨ B)

A → (A ∨ B),−0
A, +1

A ∨ B,−1
A,−1
B,−1
⊗

(A3) (A ∧ B) → A

(A ∧ B) → A,−0
A ∧ B, +1

A,−1
A, +1
B, +1
⊗

(A4) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)),−0
A ∧ (B ∨ C)), +1

(A ∧ B) ∨ (A ∧ C),−1
A, +1

B ∨ C, +1
A ∧ B,−1
A ∧ C,−1

B, +1

A,−1
⊗

B,−1
⊗

C, +1

A,−1
⊗

B,−1

A,−1
⊗

C,−1
⊗

(A5) ((A → B) ∧ (A → C)) → (A → (B ∧ C)) does not hold:

((p → q) ∧ (p → r)) → (p → (q ∧ r)),−0
(p → q) ∧ (p → r), +1

p → (q ∧ r),−1
p → q, +1
p → r, +1

Counter-model such that

w0 w1

+p → q
+p → r
−p → (q ∧ r)
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(A6) ((A → C) ∧ (B → C)) → ((A ∨ B) → C) does not hold:

((p → r) ∧ (q → r)) → ((p ∨ q) → r),−0
(p → r) ∧ (q → r), +1

(p ∨ q) → r,−1
p → r, +1
q → r, +1

Counter-model such that

w0 w1

+p → r
+q → r
−(p ∨ q) → r

(A7) ¬¬A → A

¬¬A → A,−0
¬¬A, +1

A,−1
¬A,−1#

A, +1
⊗

(R1) A, A → B ⊢N∗
B

A, +0
A → B, +0

B,−0

A,−0
⊗

B, +0
⊗

(R2) A, B ⊢N∗
A ∧ B

A, +0
B, +0

A ∧ B,−0

A,−0
⊗

B, +0
⊗
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(R3) A → B 0N∗
(C → A) → (C → B)

p → q, +0
(r → p) → (r → q),−0

r → p, +1
r → q,−1

p,−0

p,−1 q, +1

q, +0

p,−1 q, +1

Counter-model from open left-most branch such that

w0 w1

−p +r → p
−r → q
−p

(R4) A → B 0N∗
(B → C) → (A → C)

p → q, +0
(q → r) → (p → r),−0

q → r, +1
p → r,−1

p,−0

p,−1 q, +1

q, +0

p,−1 q, +1

Counter-model from open left-most branch such that

w0 w1

−p +q → r
−p → r
−p

(R5) A → ¬B ⊢N∗
B → ¬A

A → ¬B, +0
B → ¬A,−0

B, +1
¬A,−1
A, +1#

A,−1#

⊗
¬B, +1#

B,−1
⊗
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10.4.6 Show that A8 - A10 are valid in B if the appropriate constraints are
added.

(A8) (A → ¬B) → (B → ¬A)

The inference is invalid in B without the constraint:

(p → ¬q) → (q → ¬p),−0
r000, r00#0#, r011, r01#1#

p → ¬q, +1
q → ¬p,−1

r123
r022, r02#2#, r033, r03#3#

q, +2
¬p,−3
p, +3#

p,−2 ¬q, +3
q,−3#

Counter-model from open left-most branch such that

w0 w∗

0

w1 w∗

1

∠

−p, +q w2 w3 w∗

2 w∗

3 +p

p → ¬q is true at w1, because p is false at w2. However, q → ¬p is false at
w1, because q is true at w2, but p is not false at w3 - this can be seen by the
fact that p is true in w∗

3 . Thus (p → ¬q) → (q → ¬p) is false at w0.

With the addition of the constraint, ‘If Rabc then Rac∗b∗’, A8 is valid. This
can be shown by repeating the tableau, with the addition of the following rule:

rxyz

↓
rxz̄ȳ.
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(A → ¬B) → (B → ¬A),−0
r000, r00#0#, r011, r01#1#

A → ¬B, +1
B → ¬A,−1
r123, r13#2#

r022, r02#2#, r033, r03#3#

B, +2
¬A,−3
A, +3#

A,−3#

⊗
¬B, +2#

B,−2
⊗

In the below, I will be omitting the relations between world 0 and other
worlds — these will be assumed.

(A9) (A → B) → ((B → C) → (A → C))

The inference is invalid in B without the constraint:

(p → q) → ((q → r) → (p → r)),−0
p → q, +1

(q → r) → (p → r),−1
r123

q → r, +2
p → r,−3

r345
p, +4
r,−5

p,−2 q, +3

Counter-model from open left-most branch such that

w0 w∗

0

w1 w∗

1

∠

−p w2 w3 w∗

2 w∗

3

∠

+p w4 w5 −r w∗

4 w∗

5

However, with the addition of the constraint, ‘If there is an x ∈ W such that
Rabx and Rxcd, then there is a y ∈ W such that Racy and Rbyd’, it is valid.
This can be shown by repeating the tableau, with the addition of the following
rule:
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rxyz

rzuv

↓
rxuj, ryjv

(A → B) → ((B → C) → (A → C)),−0
A → B, +1

(B → C) → (A → C),−1
r123

B → C, +2
A → C,−3

r345
A, +4
C,−5

r146, r265

A,−4
⊗

B, +6

B,−6
⊗

C, +5
⊗

(A10) (A → B) → ((C → A) → (C → B)

The inference is invalid in B without the constraint:

(p → q) → ((r → p) → (r → q)),−0
p → q, +1

(r → p) → (r → q),−1
r123

r → p, +2
r → q,−3

r345
r, +4
q,−5

p,−2 q, +3

Counter-model from open left-most branch such that

w0 w∗

0

w1 w∗

1

∠

−p w2 w3 w∗

2 w∗

3

∠

+r w4 w5 −q w∗

4 w∗

5
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However, with the addition of the constraint, ‘If there is an x ∈ W such that
Rabx and Rxcd, then there is a y ∈ W such that Rbcy and Rayd’, it is valid.
This can be shown by repeating the tableau, with the addition of the rule (T10):

rxyz

rzuv

↓
ryuj, rxjv

(A → B) → ((C → A) → (C → B)),−0
A → B, +1

(C → A) → (C → B),−1
r123

C → A, +2
C → B,−3

r345
C, +4
B,−5

r246, r165

A,−6

C,−4
⊗

A, +6
⊗

B, +5
⊗

10.4a.8 Show that A13 - A16 are valid in B provided the appropriate con-
straint is added.

(A13) A ∨ ¬A

To show that (A13) is not valid in B, the following counter-model will do:

−p w0 w∗

0 +p

p is false at w0, and since p is true at w∗

0 , ¬p is false at w0, so p∨¬p is false
at w0.

A13 is valid given C13 (the condition ‘If a ∈ N , a∗ ⊑ a). We can show this
by proving that it cannot be the case that both A is false, and ¬A is false at w0

on any interpretation.

Take any interpretation such that w0 ∈ N . Suppose that this interpretation
makes A false at w0. Then it makes ¬A true at w∗

0 . But by the condition, since
w0 ∈ N , w∗

0 ⊑ w0. So, because vw∗

0
(¬A) = 1, vw0

(¬A) = 1. In other words, ¬A
is true at w0.
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(A14) (A → ¬A) → ¬A

To show that A14 is not valid in B, the following counter-model will do:

w0 w∗

0

w1 w∗

1 +p
∠

−p w2 w3 w∗

2 w∗

3

p → ¬p is true at w1, because p is false at w2. However, ¬p is not true at
w1 because p is true at w∗

1 .

To establish that A14 is valid given C14 (the condition ‘If a ∈ N , a∗ ⊑ a;
and if a ∈ W − N , Raa∗a’), suppose that in an interpretation w0 ∈ N and
Rw0aa. We need to show that if A → ¬A is true at a, so is ¬A.

Suppose that a ∈ N , and that A → ¬A is true at a. If A is true at a, then
¬A is true at a. If A is not true at a, then ¬A is true at a∗. Since a∗ ⊑ a ¬A
is true at a. So, in both cases we have the result.

Suppose that a ∈ W − N . If A → ¬A is true at a, then for all b and c such
that Rabc, either A is false at b or ¬A is true at c. By the condition, Raa∗a.
So, either A is false at a∗ or ¬A is true at a. In either case, ¬A is true at a, as
required.

(A15) A → (B → A)

To show that A15 is not valid in B, the following will do, where w0 is the
only normal world, and ⊑ is =.

w0 w∗

0

+p w1 w∗

1

∠

+q w2 w3 −p w∗

2 w∗

3

p is true at w1. But Rw1w2w3, q is true at w2, and p is false at w3, hence
q → p is false at w1 and p → (q → p) is false at w0.

To show that A15 is valid given C15 (the condition ‘If Rabc then a ⊑ c’),
suppose that in an interpretation w0 ∈ N and Rw0aa. We must show that if A
is true at a, then so is B → A. Let us take A to be true at a. If B → A were
not true at a then there would be two worlds b and c such that Rabc, B is true
at b, and A is false at c. But, by the condition, since Rabc, a ⊑ c. A is true at
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a, so A is true at c.

(A16) A → (A → A)

To show that A16 is not valid in B, the following will do, where w0 is the
only normal world, and ⊑ is =.

w0 w∗

0

+p w1 w∗

1

∠

+p w2 w3 −p w∗

2 w∗

3

p is true at w1. However, Rw1w2w3, and p is true at w2, but p is false at
w3, so p → p is false at w1.

To show that A16 is valid given C16 (the condition ‘If Rabc then a ⊑ c
or b ⊑ c), suppose that in an interpretation w0 ∈ N and Rw0aa. We must
show that if A is true at a, then so is A → A. Suppose that A is true at a. If
A → A were not true at a then there must be two worlds b and c such that Rabc,
and A is true at b, but A is not true at c. By the condition, since Rabc, a ⊑ c
or b ⊑ c. Since A is true at both a and b, in either case, A is true at c, as required.

10.5.5 Check that every axiom of R takes a designated value in RM3.

RM3: D = {1, i}

f⊃ 1 i 0
1 1 0 0
i 1 i 0
0 1 1 1

I will substitute ⊃ for → in the following. I will take R to be axiomatised
by A1 - A12 plus R1 and R2.

(A1) A ⊃ A

If the values of A and B are the same, then the value of A ⊃ B is designated.
Hence A ⊃ A is always designated.

(A2) A ⊃ (A ∨ B)

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i), (i,0) or (1, 0). If (1, i) the truth-value of
A∨B is i. Looking at the truth-table for ∨ we can see that this means the truth
value of A (B) cannot be 1. But this is contradictory. If (i, 0) then the truth
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value of A ∨ B is 0 so the truth-value of A (B) is 0. But this is contradictory.
Likewise, if (1, 0), the truth-value of A ∨ B is 0, so the truth value of A (B) is
0. But this is contradictory.

(A3) (A ∧ B) ⊃ A

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i), (i,0) or (1, 0). If (1, i) then the truth-value
of A ∧ B is 1, so the truth value of A (B) is 1. But this is contradictory. If (i,
0) then looking at the truth-table for ∧ we see that the truth value of A (B)
cannot be 0. But this is contradictory. If (1, 0), the truth-value of A ∧ B is 1,
so the truth value of A (B) is 1. But this is contradictory.

(A4) A ∧ (B ∨ C) ⊃ ((A ∧ B) ∨ (A ∧ C))

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i), (i,0) or (1, 0). If (1, i) then the truth-value
of A∧ (B ∨C) is 1, so the truth value of A is 1, and the truth value of B or C is
1. The truth value of (A ∧ B) ∨ (A ∧ C) is i, but if the truth value of A and B
(or C) is 1, this cannot be the case. If (i, 0) then the truth value of A∧ (B ∨C)
is i, so the truth value of A is i or 1.But the truth value of the consequent is
0, so the truth value of A ∧ B, and A ∧ C, is also. But this is contradictory. If
(1, 0), similarly, the antecedent tells us that the truth-value of A is 1. But the
consequent tells us that the truth-value of A is 0.

(A5) ((A ⊃ B) ∧ (A ⊃ C)) ⊃ (A ⊃ (B ∧ C))

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i), (i,0) or (1, 0). If (1, i) then the truth-value
of (A ⊃ B)∧ (A ⊃ C) is 1, so the truth value of A ⊃ B is 1, and the truth-value
of A is 0, or the truth-value of B is 1 or i, and from the second conjunct, if A
is not 0, C is 1 or i. So, either A is 0, or B and C are 1 or i. If A is 0, then
the consequent is not 0. And if B and C are 1 or i then B ∧ C is 1 or i, so the
value of the consequent is not 0. If (i, 0) then the truth value of A ⊃ (B ∧ C)
is 0, so again there are three possibilities for the consequent: (1, i), (i,0) or (1,
0). In the cases where A is 1, B ∧ C is i or 0. So the values of one of B or C
are i or 0. Hence one of the conjuncts in the antecedent must take the value 0,
and hence the antecedent must take the value 0. In the case where A is i, B
and C are 0, so the antecedent is 0. If the value of the inference is (1,0) then
again there are three possibilities for the consequent, (1, i), (i,0) or (1, 0). The
same reasoning as above shows the inference to always take a designated value.

(A6) ((A ⊃ C) ∧ (B ⊃ C)) ⊃ ((A ∨ B) ⊃ C)

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i) (i,0) or (1, 0). If (1, i) then the truth-value
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of (A∨B) ⊃ C) is i, so the truth value of A∨B is i, meaning it is not the case
that both A and B is 0. If C is i, the only way in which the antecedent can
take the value 1 is for both A and B to take the value 0. But this is not the
case. If (i, 0) then there are three possibilities for the consequent: (1, i) (i,0)
or (1, 0). In the case where C is i, A ∨ B is 1, so A or B is 1. But then one of
the conjuncts in the antecedent takes the value 0, and so does the conjunct. In
the cases where C is 0, A ∨ B is either 1, or i, so it is not the case that both A
and B take the value 0. But both (i, 0) and (1, 0) are assign conditionals the
value 0, so the value of the antecedent is 0. If the inference takes the values (1,
0), then again the consequent takes the value 0, and the same reasoning shows
that the antecedent cannot be 1.

(A7) ¬¬A ⊃ A

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i) (i,0) or (1, 0). Looking at the truth table
for ¬A in RM3, it is clear that ¬¬A will always take the same value asA, so all
three possibilities are contradictory.

(A8) (A ⊃ ¬B) ⊃ (B ⊃ ¬A)

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i) (i,0) or (1, 0). In the first case, from the
consequent, the truth values of B and ¬A are both i. Hence the value of A is i,
and the value of ¬B is i. But then the value of the antecedent is i. In the second
case, the same reasoning can be applied to the antecedent. In the third case,
there are three possibilities for the consequent: (1, i) (i,0) or (1, 0). In the case
where B is 1, and ¬A is i, ¬B is 0 and A is i. So A ⊃ ¬B is 0. In the case where
B is i and ¬A is 0, ¬B is i and A is 1. So the value of A ⊃ ¬B is 0. In the case
where B is 1 and ¬A is 0, ¬B is 0, and A is 1. So the truth value of A ⊃ ¬B is 0.

(A9) (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i) (i,0) or (1, 0). In the first case, the value
of B ⊃ C and A ⊃ C is i, thus the values of A, B and C are i. But then the
value of the antecedent is i. In the second case, from the antecedent, the values
of A and B are i. But then the two halves of the conditional in the consequent
take the same truth value, and so the value of the consequent is not 0. In the
third case, there are three possibilities for the consequent: (1, i) (i,0) or (1,
0). In the case where B ⊃ C is 1, and A ⊃ C is i, both A and C are i, so
then B must be 0. But this means that the antecedent A ⊃ B is 0. In the
case where B ⊃ C is i and A ⊃ C is 0, both B and C are i, so A must be 1.
But then A ⊃ B is 0. In the case where B ⊃ C is 1 and A ⊃ C is 0, A and
C take either (1, i) (i,0) or (1, 0). In every case, B must take 0, so A ⊃ B takes 0.
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(A10) (A ⊃ B) ⊃ ((C ⊃ A) ⊃ (C ⊃ B))

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i) (i,0) or (1, 0). In the first case, the value
of C ⊃ A and C ⊃ B is i, thus the values of A, B and C are i. But then
the value of the antecedent is i. In the second case, from the antecedent, the
values of A and B are i. But then the two halves of the conditional in the
consequent take the same truth value, and so the value of the consequent is not
0. In the third case, there are three possibilities for the consequent: (1, i) (i,0)
or (1, 0). In the case where C ⊃ A is 1, and C ⊃ B is i, both B and C are
i, so then A must be 1. But this means that the antecedent A ⊃ B is 0.In the
case where C ⊃ A is i and C ⊃ B is 0, both A and C are i, so A must be 1.
But then A ⊃ B is 0. In the case where C ⊃ A is 1 and C ⊃ B is 0, C and
B take either (1, i) (i,0) or (1, 0). In every case, A must take 0, so A ⊃ B takes 0.

(A11) (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i) (i,0) or (1, 0). In the first case, the value of
A ⊃ B is i, thus the values of A and B i. But then the value of the antecedent
is i. In the second case, from the antecedent, the values of A and B are i. But
then the value of the consequent is i. In the third case, there are three possibil-
ities for the consequent: (1, i) (i,0) or (1, 0). In all three cases, the value of the
antecedent comes out as 0.

(A12) A ⊃ ((A ⊃ B) ⊃ B)

Suppose this were undesignated in RM3. Then the truth values of the an-
tecedent and consequent are (1, i) (i,0) or (1, 0). In the first case, the value of
(A ⊃ B) ⊃ B is i, hence the value of A is i. In the second case the value of
A is i. If B is 1, the value of the consequent is 1. If B is i, the value of the
consequent is i. If B is 0, the value of the consequent is 0. In the third case,
the value of A is 1. If B is 1, the value of the consequent is 1. If B is i, the
value of the consequent is 1. If B is 0, the value of the consequent is 1.

(R1) A, A ⊃ B ⊢ B

Suppose the premises were designated, and conclusion undesignated in RM3.
Then the value of B is 0, and the value of each premise is 1 or i. However, if A
is 1 or i, the value of A ⊃ B is 0.

(R2) A, B ⊢ A ∧ B

Suppose the premises were designated, and conclusion undesignated in RM3.
Then the value of A ∧ B is 0, so the value of either A or B is 0. Hence one of
the premises is undesignated.
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10.5.6 Check that all the axioms of R are valid in the logic given in this
section.

Unfortunately the author of these solutions is not enough of a masochist to
attempt this exercise. Get some large pieces of paper, and check the 8, 64, or
512 cases in the truth table for each axiom!

10.7.1 Check that the inferences of 5.2.1 are all valid in N∗.

Antecedent strengthening: A → B �N∗
(A ∧ C) → B

A → B, +0
(A ∧ C) → B,−0

A ∧ C, +1
B,−1
A, +1
C, +1

A,−1
⊗

B, +1
⊗

Transitivity: A → B, B → C �N∗
A → C

A → B, +0
B → C, +0
A → C,−0

A, +1
C,−1

A,−1
⊗

B, +1

B,−1
⊗

C, +1
⊗

Contraposition: A → B �N∗
¬B → ¬A

A → B, +0
¬B → ¬A,−0

¬B, +1
¬A,−1
B,−1#

A, +1#

A,−1#

⊗
B, +1#

⊗

17



2. Show that the following fail in B:

(a) (p ∧ q) → r ⊢ p → (q → r)

(p ∧ q) → r, +0
p → (q → r),−0

r000, r00#0#, r011, r01#1#

p, +1
q → r,−1

r123
q, +2
r,−3

r022, r02#2#, r033, r03#3#

p ∧ q,−3

p,−3

p ∧ q,−2

p,−2

p ∧ q,−1

p,−1
⊗

q,−1

r, +1

q,−2
⊗

r, +2

p ∧ q,−1

p,−1
⊗

q,−1

r, +1

q,−3

p ∧ q,−2

p,−2 q,−2
⊗

r, +2

p ∧ q,−1

p,−1
⊗

q,−1

r, +1

r, +3
⊗

The rule for A → B, +i is applied to line 1 for world 0 and all the star-
worlds as well, but since negation does not appear in the non-star worlds, no
contradictions will arise. I have ommitted this step for space reasons.

A countermodel can be read off the left-most open branch of the tableau as
below:

w0 −p w∗

0 −p

w1 −q, +p w∗

1 −p
∠

−p, +q w2 w3 −p,−r −p w∗

2 w∗

3 −p
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The normality relations are assumed, as in the text.

Let us check that this interpretation works:

There is no world where p ∧ q, therefore the premise is true. However, at
w1, p is true, so the conclusion states that q → r must be true there as well.
Rw1w2w3. and q is true at w2 but r is false at w3, so the conclusion is false.

(b) p → (q → r) ⊢ (p ∧ q) → r

p → (q → r), +0
(p ∧ q) → r,−0

r000, r00#0#,r011, r01#1#

p ∧ q, +1
r,−1
p, +1
q, +1

p,−1
⊗

q → r, +1

p,−0

p,−0#

p,−1# q → r, +1#

q → r, +0#

p,−1# q → r, +1#

q → r, +0

q,−1
⊗

r, +1
⊗

A counter-model can be read off the left-most open branch of the tableau as
below:

w0 −p w∗

0 −p

w1 +p, +q,−r w∗

1 −p

The normality relations are assumed, as in the text.

Let us check that this interpretation works:

w1, where p is true, is not related to any other world, so q → r is trivially
true there, and the premise is true at w0. However, at w1 where p∧ q is true, r
is not true, so the conclusion is false.
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(c) ⊢ ((p → q) ∧ (q → r)) → (p → r)

((p → q) ∧ (q → r)) → (p → r),−0
r000, r00#0#,r011, r01#1#

(p → q) ∧ (q → r), +1
p → r,−1
p → q, +1
q → r, +1

r123
p, +2
r,−3

r022, r02#2#, r033, r03#3#

p,−2
⊗

q, +3

q,−2 r, +3
⊗

A counter-model can be read off the open branch of the tableau as below:

w0 w∗

0

w1 w∗

1

∠

+p,−q w2 w3 +q,−r w∗

2 w∗

3

The normality relations are assumed, as in the text.

Let us check that this interpretation works:

p is true at w2 and q is true at w3 making p → q true at w1. q is false at
w2 making q → r true at w1. Thus the antecedent (p → q) ∧ (q → r) is true
at w1. However, p is true at w2, and false at w3 where Rw1w2w3, meaning the
consequent p → r is false at w1, and the whole inference is false at w0.
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(d) ⊢ (p → q) → ((p ∧ r) → (q ∧ r))

(p → q) → ((p ∧ r) → (q ∧ r)),−0
r000, r00#0#,r011, r01#1#

p → q, +1
(p ∧ r) → (q ∧ r),−1

r123
p ∧ r, +2
q ∧ r,−3

r022, r02#2#, r033, r03#3#

p, +2
r, +2

q,−3

p,−2
⊗

q, +3
⊗

r,−3

p,−2
⊗

q, +3

A counter-model can be read off the only open branch of the tableau as below:

w0 w∗

0

w1 w∗

1

∠

+p, +r w2 w3 +q,−r w∗

2 w∗

3

The normality relations are assumed, as in the text.

Let us check that this interpretation works:

The antecedent is true at w1 because at p is true at w2 and q is true at w3.
The consequent is false at w1 because Rw1w2w3, and while both p and r are
true at w1, r is false at w3.
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(e) (p ∧ q) → r ⊢ (p ∧ ¬r) → ¬q

(p ∧ q) → r, +0
(p ∧ ¬r) → ¬q,−0

r000, r00#0#,r011, r01#1#

p ∧ ¬r, +1
¬q,−1
p, +1
¬r, +1
r,−1#

q, +1#

p ∧ q,−1

p,−1
⊗

q,−1

p ∧ q,−1#

p,−1# q,−1#

⊗

r, +1#

⊗

r, +1

p ∧ q,−1#

p,−1# q,−1#

⊗

r, +1#

⊗

The rule for A → B, +i is applied to line 1 for w0 and the star world of w0

as well, but since all other rules have been applied, and no parameters appear in
those worlds, no contradictions will arise. I have omitted these steps for space
reasons.

A counter-model can be read off the left-most open branch of the tableau as
below:

w0 −p w∗

0 −p

w1 +p,−q w∗

1 −p, +q,−r

The normality relations are assumed, as in the text.

Let us check that this interpretation works:

There are no worlds where p ∧ q so the premise is true at w0. However, at
w1, p and ¬r obtain (because r is false at w∗

1), but ¬q does not (because q is
true at w∗

1 , making the conclusion false at w0.
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3. Show that (p∧ (p → q)) → q is not logically valid in B. Show that it is if
we require every world, w, of every interpretation to meet the condition Rwww.

0B (p ∧ (p → q)) → q
(p ∧ (p → q)) → q,−0

r000, r00#0#,r011, r01#1#

p ∧ (p → q), +1
q,−1
p, +1

p → q, +1

A counter-model can be read off the open branch of the tableau as below:

w0 w∗

0

w1 +p,−q w∗

1

The normality relations are assumed, as in the text.

Let us check that this interpretation works:

At w1, both p and p → q are true (because w1 is not related to other worlds
as the first of a triple), but q is false, therefore the formula is false at w0.

If we require every world of every interpretation to meet the condition
Rwww, then ⊢B (p ∧ (p → q)) → q

This can be shown by a short semantic proof:

Suppose the inference is false. Then there is an interpretation such that
w0 ∈ N , Rw0aa, p ∧ (p → q) is true at a, and q is not true at a. So p is true at
a, and p → q is true at a. However, by the condition above, Raaa, so q is true
at a.
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4. Give deductions for the following in R:

(a) ⊢ ¬A → ¬(A ∧ B)

(1) (A ∧ B) → A A3
(2) ¬A → ¬A A1
(3) (¬A → ¬A) → (A → ¬¬A) A8
(4) A → ¬¬A (2), (3) and R1
(5) ((A ∧ B) → A) → ((A → ¬¬A) → ((A ∧ B) → ¬¬A)) A9
(6) (A → ¬¬A) → ((A ∧ B) → ¬¬A) (1), (5) and R1
(7) (A ∧ B) → ¬¬A (4), (6) and R1
(8) ((A ∧ B) → ¬¬A) → (¬A → ¬(A ∧ B)) A8
(9) ¬A → ¬(A ∧ B) (7), (8) and R1

(b) ⊢ ¬(A ∧ ¬A)

(1) A → ¬¬A Shown above 4(a)
(2) (A ∧ ¬A) → A A3
(3) (A → ¬¬A) → ((A ∧ ¬A) → ¬¬A) (2) and R4
(4) (A ∧ ¬A) → ¬¬A (1), (3) and R1
(5) ((A ∧ ¬A) → ¬¬A) → (¬A → ¬(A ∧ ¬A)) A8
(6) ¬A → ¬(A ∧ ¬A) (4), (5) and R1
(7) (A ∧ ¬A) → ¬A A3
(8) ((A ∧ ¬A) → ¬A) → (A → ¬(A ∧ ¬A)) A8
(9) A → ¬(A ∧ ¬A) (7), (8) and R1
(10) (A → ¬(A ∧ ¬A)) ∧ (¬A → ¬(A ∧ ¬A)) (6), (9) and R2
(11) ((A → ¬(A ∧ ¬A)) ∧ (¬A → ¬(A ∧ ¬A))) → ((A ∨ ¬A) → ¬(A ∧ ¬A)) A6
(12) (A ∨ ¬A) → ¬(A ∧ ¬A) (10), (11) and R1
(13) A ∨ ¬A (10.5.4)
(14) ¬(A ∧ ¬A) (13), (12) and R1

(c) A → B, A → ¬B ⊢ ¬A

(1) A → B Assumption
(2) A → ¬B Assumption
(3) (A → B) ∧ (A → ¬B) (1), (2) and R2
(4) ((A → B) ∧ (A → ¬B)) → (A → (B ∧ ¬B)) A5
(5) A → (B ∧ ¬B) (3), (4) and R1
(6) (B ∧ ¬B) → ¬¬(B ∧ ¬B) Shown above 4(a)
(7) (A → (B ∧ ¬B)) → (((B ∧ ¬B) → ¬¬(B ∧ ¬B)) → (A → ¬¬(B ∧ ¬B))) A9
(8) ((B ∧ ¬B) → ¬¬(B ∧ ¬B)) → (A → ¬¬(B ∧ ¬B) (5), (7) and R1
(9) A → ¬¬(B ∧ ¬B) (6), (8) and R1
(10) (A → ¬¬(B ∧ ¬B)) → (¬(B ∧ ¬B) → ¬A) A8
(11) ¬(B ∧ ¬B) → ¬A (9), (10) and R1
(12) ¬(B ∧ ¬B) Shown above 4(b)
(13) ¬A (11), (12) and R1
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5. Show that in R, A12 may be replaced by permutation: (A → (B →
C)) → (B → (A → C)). Show that in R, A11 may be replaced by A14. (Hint
for the second: take (A → ¬A) → ¬A, and prefix the antecedent and conse-
quent with ¬B. Then use permutation on the antecedent.)

A12: A → ((A → B) → B)

Permutation: (A → (B → C)) → (B → (A → C))

I will show that A12 may be replaced by permutation by showing that the
former may be deduced from permutation plus the other R assumptions. The
textbook already shows that permutation is a theorem of the axiom system of
R with the axiom A → ((A → B) → B))

(1) (A → B) → (A → B) A1
(2) ((A → B) → (A → B)) → (A → ((A → B) → B)) Permutation
(3) A → ((A → B) → B) (1), (2) and R1

A11: (A → (A → B)) → (A → B)

A14: (A → ¬A) → ¬A

I will show that A11 may be replaced by A14 by showing that the former
may be deduced from the latter plus the other R assumptions.

(1) (A → ¬A) → ¬A A14
(2) (¬B → (A → ¬A)) → (¬B → ¬A) (1), R3
(3) (A → (¬B → ¬A)) → (¬B → (A → ¬A)) Permutation
(4) ((¬B → (A → ¬A)) → (¬B → ¬A)) → ((A → (¬B → ¬A)) → (¬B → ¬A)) (3), R4
(5) (A → (¬B → ¬A)) → (¬B → ¬A) (2), (4), R1
(6) (¬B → ¬A) → (A → ¬¬B) A8
(7) ¬¬B → B Shown above
(8) (A → ¬¬B) → (A → B) (7), R3
(9) ((A → ¬¬B) → (A → B)) → ((¬B → ¬A) → (A → B)) (6) and R4
(10) (¬B → ¬A) → (A → B) (8), (9), R1
(11) ((¬B → ¬A) → (A → B)) → ((A → (¬B → ¬A)) → (A → B)) (5), and R4
(12) (A → (¬B → ¬A)) → (A → B) (10), (11), R1
(13) (A → ¬¬B) → (¬B → ¬A) A8
(14) B → ¬¬B Shown above
(15) (B → ¬¬B) → ((A → B) → (A → ¬¬B)) A10
(16) (A → B) → (A → ¬¬B) (14), (15), R1
(17) ((A → ¬¬B) → (¬B → ¬A)) → ((A → B) → (¬B → ¬A)) (16), R4
(18) (A → B) → (¬B → ¬A) (13), R1
(19) ((A → B) → (¬B → ¬A)) → ((A → (A → B)) → (A → (¬B → ¬A))) A10
(20) (A → (A → B)) → (A → (¬B → ¬A)) (18), (19), R1
(21) ((A → (¬B → ¬A)) → (A → B)) → ((A → (A → B)) → (A → B)) (20), R4
(22) (A → (A → B)) → (A → B) (12), (21), R1
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6. Show that ⊢RM (p ∧ ¬p) → ¬(q ∧ ¬q). This is non-trivial. Start by
showing that in R ⊢ (A ∨ ¬A) ↔ ¬(A ∧ ¬A), ⊢ (A ∧ ¬A) ↔ ¬(A ∨ ¬A), and
⊢ (A → B) → (¬B → ¬A) (contraposition). (Use any appropriate method)
Now formalise the following deduction. Let A be (p∧¬p)∨ (q ∧¬q). A16 gives
A → (A → A); so by contraposition and permutation ¬A → (A → ¬A). Sub-
stituting for A, we have:

¬((p ∧ ¬p) ∨ (q ∧ ¬q)) → (((p ∧ ¬p) ∨ (q ∧ ¬q)) → ¬((p ∧ ¬p) ∨ (q ∧ ¬q)))

But the antecedent is equivalent to the conjunction of two instances of Ex-
cluded Middle. Hence we can detach the consequent. This is equivalent to
((p ∧ ¬p) ∨ (q ∧ ¬q)) → (¬(p ∧ ¬p) ∧ ¬(q ∧ ¬q)). (p ∧ ¬p) → ¬(q ∧ ¬q) follows.

“Start by showing that in R ⊢ (A ∨ ¬A) ↔ ¬(A ∧ ¬A), ⊢ (A ∧ ¬A) ↔
¬(A ∨ ¬A), and ⊢ (A → B) → (¬B → ¬A) (contraposition).”

⊢R (A ∨ ¬A) ↔ ¬(A ∧ ¬A)

To show this, we can show each half of the biconditional using a tree diagram.

(A ∨ ¬A) → ¬(A ∧ ¬A),−0
A ∨ ¬A, +1

¬(A ∧ ¬A),−1
A ∧ ¬A, +1#

A, +1#

¬A, +1#

A,−1

A, +1
⊗

¬A, +1
A,−1#

⊗

¬(A ∧ ¬A) → (A ∨ ¬A),−0
¬(A ∧ ¬A), +1

A ∨ ¬A,−1
A,−1
¬A,−1
A, +1#

A ∧ ¬A,−1#

A,−1#

⊗
¬A,−1#

A, +1
⊗

⊢R (A ∧ ¬A) ↔ ¬(A ∨ ¬A)

We can show this also by showing that each half of the biconditional holds
using tree diagrams:
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(A ∧ ¬A) → ¬(A ∨ ¬A),−0
A ∧ ¬A, +1

¬(A ∨ ¬A),−1
A, +1
¬A, +1
A,−1#

A ∨ ¬A, +1#

A, +1#

⊗
¬A, +1#

A,−1
⊗

¬(A ∨ ¬A) → (A ∧ ¬A),−0
¬(A ∨ ¬A), +1

A ∧ ¬A,−1
A ∨ ¬A,−1#

A,−1#

¬A,−1#

A, +1

A,−1
⊗

¬A,−1
A, +1#

⊗

⊢R (A → B) → (¬B → ¬A)
This can be shown by a short deduction:

(1) (A → ¬¬B) → (¬B → ¬A) A8
(2) B → ¬¬B p.193
(3) (A → B) → ((B → ¬¬B) → (A → ¬¬B)) A9
(4) ((A → B) → ((B → ¬¬B) → (A → ¬¬B))) →
(4) (((B → ¬¬B)) → ((A → B) → (A → ¬¬B))) (3), Permutation
(5) ((B → ¬¬B)) → ((A → B) → (A → ¬¬B)) 3,4,R1
(6) (A → B) → (A → ¬¬B) (2), (5) and R1
(7) ((A → ¬¬B) → (¬B → ¬A)) → ((A → B) → (¬B → ¬A)) 6, R4
(8) (A → B) → (¬B → ¬A) (1), (7) and R1

“Now formalize the following deduction. Let A be (p ∧ ¬p) ∨ (q ∧ ¬q). A16
gives A → (A → A); so by contraposition and permutation ¬A → (A → ¬A).
Substituting for A, we have:

¬((p ∧ ¬p) ∨ (q ∧ ¬q)) → (((p ∧ ¬p) ∨ (q ∧ ¬q)) → ¬((p ∧ ¬p) ∨ (q ∧ ¬q)))

But the antecedent is equivalent to the conjunction of two instances of Ex-
cluded Middle. Hence we can detach the consequent. This is equivalent to
((p∧ ¬p) ∨ (q ∧ ¬q)) → (¬(p ∧ ¬p) ∧¬(q ∧ ¬q)). (p∧ ¬p) → ¬(q ∧ ¬q) follows.”

⊢R ¬A → (A → ¬A)
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(1) A → (A → A) A16
(2) (A → A) → (¬A → ¬A) Contraposition
(3) (A → (A → A)) → (((A → A) → (¬A → ¬A)) → (A → (¬A → ¬A))) A9
(4) ((A → A) → (¬A → ¬A)) → (A → (¬A → ¬A)) (1), (3) and R1
(5) A → (¬A → ¬A) (2), (4) and R1
(6) (A → (¬A → ¬A)) → (¬A → (A → ¬A)) Permutation.
(7) ¬A → (A → ¬A) (5), (6) and R1

Now we have established that the above is valid, we can substitute (p∧¬p)∨
(q ∧ ¬q) for A:

¬((p ∧ ¬p) ∨ (q ∧ ¬q)) → (((p ∧ ¬p) ∨ (q ∧ ¬q)) → ¬((p ∧ ¬p) ∨ (q ∧ ¬q)))

By De Morgan’s law, the antecedent is equivalent to ¬(p ∧ ¬p) ∧ ¬(q ∧ ¬q).
Both conjuncts of this formula are logical truths, hence the conjunction is also.
The antecedent is a logical truth, so by detachment,

⊢ ¬((p ∧ ¬p) ∨ (q ∧ ¬q)) → (((p ∧ ¬p) ∨ (q ∧ ¬q)) → ¬((p ∧ ¬p) ∨ (q ∧ ¬q)))

iff

⊢ ((p ∧ ¬p) ∨ (q ∧ ¬q)) → ¬((p ∧ ¬p) ∨ (q ∧ ¬q))

The whole inference now reads:

⊢ ((p ∧ ¬p) ∨ (q ∧ ¬q)) → (¬(p ∧ ¬p) ∧ ¬(q ∧ ¬q))

If either A or B entail C, then A entails C, and B entails C (and possibly
both entail C), so we can detach one half of the disjunct in the antecedent:

⊢ (p ∧ ¬p) → ¬(p ∧ ¬p) ∧ ¬(q ∧ ¬q)

And if A entails B and C, then A entails B — so we can take away half of
the conjunct in the consequent:

⊢ (p ∧ ¬p) → ¬(q ∧ ¬q)

Leaving us with the conclusion.
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7. Show that if all the worlds of an interpretation are normal, the constraints
C8-C11 hold. Infer that any logic obtained by adding to B any of A8-A11 is a
sub-logic of K∗. Show that the same is not true of A12. Is it true of A13?

If all the worlds of an interpretation are normal, then for any worlds wi, wj ,
Rwiwjwj .

(C8) If Rabc then Rac∗b∗

Suppose that Rabc. Since a is normal, b = c. So b∗ = c∗, and Rac∗b∗.

(C9) If there is an x ∈ W such that Rabx and Rxcd, then there is a y ∈ W
such that Rbcy and Rayd.

Since all worlds in the interpretation are normal, x is normal and a is nor-
mal. So Rabx means that x = b, and Rxcd means that c = d. Radd because a
is normal; Racd because c = d. Rbcc because b is normal. Thus c is a y such
that Rbcy and Rayd.

(C10) If there is an x ∈ W such that Rabx and Rxcd then there is a y ∈ W
such that Rbcy and Rayd.

Assume that there is an x ∈ W such that Rabx and Rxcd. b = x because
a is normal. c = d because x is normal. Rbcc because b is normal, and Radd
because a is normal. Then, because c = d, Racd. Thus c is a y ∈ W such that
Rbcy and Rayd.

(C11) If Rabc then for some x ∈ W , Rabx and Rxbc.

If Rabc then, because a is normal, b = c. Because a is normal, Rabb; because
b = c, Rabc. Because c is normal, Rccc. Because b = c, Rcbc. Thus c is an
x ∈ W such that Rabx and Rxbc.

In K∗, all worlds of all interpretations are normal. Thus C8−C11 hold. By
10.4.6, this means that A8−A11 hold in K∗. B is a sub-logic of K∗, so B with
the addition of any of A8 − A11 is still a sub-logic of K∗.

A12 does not hold in K∗:

0K∗
p → ((p → q) → q)
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p → ((p → q) → q),−0
p, +1

(p → q) → q,−1
p → q, +2

q,−2

p,−2

p,−1
⊗

q, +1

p,−0

p,−0#

p,−1#

p,−2# q, +2#

q, +1#

p,−2# q, +2#

q, +0#

p,−1#

p,−2# q, +2#

q, +1#

p,−2# q, +2#

q, +0

p,−0#

p,−1#

p,−2# q, +2#

q, +1#

p,−2# q, +2#

q, +0#

p,−1#

p,−2# q, +2#

q, +1#

p,−2# q, +2#

q, +2
⊗

Countermodel taken from the open left-most branch as below:

w0 w1 w2 w∗

0 w∗

1 w∗

2

−p +p −p −p −p −p
+q −q

Let us check that this interpretation works:

p → q is true at all worlds, but q is false at w2, so (p → q) → q is false at
w1. p is true at w1, so the whole sentence is false at w0.

A13 also does not hold in K∗:

0K∗
p ∨ ¬p

p ∨ ¬p,−0
p,−0
¬p,−0
p, +0#

Counter-model taken from the open left-most branch as below :
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w0 w∗

0

−p +p

Let us check that this interpretation works:

p is not true at w0, but since p is true at w#
0 , ¬p is not true at w0 either.
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8. (Another exercise for masochists.) Show that all the axioms of R are
valid in the following many-valued logic, and that all the rules of R preserve
validity; hence, that R is a sub-logic of the logic. The values of the logic are the
integers, together with a new object ∞. All but 0 are designated. The logical
operators are defined as follows:

¬0 = ∞; ¬∞ = 0; ¬a = −a otherwise
0 ∧ a = a ∧ 0 = 0;∞∧ a = a ∧∞ = a
0 ∨ a = a ∨ 0 = a;∞∨ a = a ∨∞ = ∞
0 → a = a → ∞ = ∞; if a 6= 0, a → 0 = 0, if a 6= ∞,∞ → a = 0

if a and b are positive integers then:

if a divides b, a → b = b/a;otherwise, a → b = 0
a ∧ b is the greatest common divisor of a and b
a ∨ b is the least common multiple of a and b

if a and b are negative integers then:

a ∧ b = −(−a ∨ −b)
a ∨ b = (−a ∧ −b)
a → b = −b → −a

if a is a negative integer and b is a positive integer, then:

a → b = 0; b → a = b.a
a ∧ b = b ∧ a = b
a ∨ b = b ∨ a = a

I will go through the axioms of R (A1 - A12, R1 and R2) to show that they
are valid in this many valued logic.

It will be helpful to note first some facts about the Greatest Common Divi-
sor (GCD) and the Lowest Common Multiple (LCM):

The GCD of any two numbers is calculated by expressing both as multiples
of their prime factors, and multiplying together the common prime factors.

The LCM of any two numbers is calculated by expressing both as multiples
of their prime factors, and multiplying one by the non-common prime factors of
the other.

Further, the GCD and LCM are closely related:

(1) GCD(A, B) · LCM(A, B) = A · B

Thus, by distributivity,
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(2) GCD(A, LCM(B, C)) = LCM(GCD(A, B), GCD(A, C))

and

(3) LCM(A, GCD(B, C)) = GCD(LCM(A, B), LCM(A, C))

Finally, If m is a nonzero common divisor of A and B, then

GCD(
A

m
,
B

m
) =

GCD(A, B)

m

These facts will be referred to in the proofs below.

(A1) A → A

Suppose this were undesignated. Then it takes the value 0. For →, this
happens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii)
A and B are both positive, and A does not divide B (iv) A is negative and B
is positive. All of these possibilities imply that the value of the consequent is
different to the value of the antecedent, but since they are both A, this cannot be.

(A2) A → (A ∨ B)

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

In the case where A 6= 0 and A ∨ B = 0, the consequent is 0 ∨ 0, so A = 0.

In the case where A = ∞, A∨B 6= ∞, the consequent is ∞∨B, so its value
is ∞.

In the case where A and A ∨ B are positive and A does not divide A ∨ B,
A ∨ B is the LCM of A and B, so A must divide A ∨ B.

In the case where A is negative, and A ∨ B is positive, either B is positive
or negative. If B is positive, then (A ∨ B) = A, so A ∨ B is negative. If B is
negative, then (A ∨ B) = −(−A ∧ −B). So, it is the negation of the LCM of
positive A and B, hence it is negative.

(A3) (A ∧ B) → A

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

In the case where A∧B 6= 0 and A = 0, the antecedent is 0∧B, so its value is 0
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In the case where A∧B = ∞, A 6= ∞, the antecedent is ∞∧∞, so A = ∞.

In the case where A ∧ B and A are positive and A ∧ B does not divide A,
A ∧ B is the GCD of A and B, so A ∧ B must divide A.

In the case where A ∧ B is negative, and A is positive, B is either positive
or negative. If B is positive, then A ∧ B is the LCM of positive A and B, so
A ∧ B is positive. If B is negative, then (A ∧ B) = A, hence A ∧ B is positive.

(A4) A ∧ (B ∨ C) → ((A ∧ B) ∨ (A ∧ C))

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

In the case where (A∧(B∨C)) 6= 0 and ((A∧B)∨(A∧C)) = 0, (A∧B) = 0
and (A∧C)) = 0, so A or (B and C) = 0. If A = 0 then the antecedent is 0. If
(B and C) = 0, then (B ∨ C) = 0, so again the antecedent is 0.

In the case where (A ∧ (B ∨ C)) = ∞, ((A ∧ B) ∨ (A ∧ C)) 6= ∞, both A
and B ∨ C are ∞. So either B or C is ∞. If B is ∞, then A ∧ B is ∞ so the
consequent is ∞. If C is ∞ then A ∧ C is ∞ so the consequent is ∞.

In the case where the antecedent and consequent are positive, and the an-
tecedent does not divide the consequent, the antecedent is the GCD of A and
(the LCM of B and C). While the consequent is the LCM of (the GCD of A
and B) and (the GCD of A and C).

Clearly then, A4 is an instance of (2) above: GCD(A, LCM(B, C)) =
LCM(GCD(A, B), GCD(A, C)). The antecedent and consequent are equal to
one another, therefore the antecedent divides the consequent.

In the case where A∧ (B ∨C) is negative, and (A∧B)∨ (A∧C) is positive,
the consequent is GCD(A ∧ B, A ∧ C), and from the antecedent, A and B ∨ C
are negative. Hence one or both of B and C are negative. But then one or both
of A ∧ B and A ∧ C are negative, so the consequent is not a GCD.

(A5) ((A → B) ∧ (A → C)) → (A → (B ∧ C))

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

In the case where ((A → B) ∧ (A → C)) 6= 0 and (A → (B ∧ C)) = 0, the
consequent is a conditional, so there are four further possibilities:
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A 6= 0, (B ∧C) = 0, (B ∧C) 6= ∞, A = ∞, A and B ∧C are positive, and A
does not divide B ∧ C, or A is negative, and B ∧ C is positive.

If A 6= 0, (B ∧C) = 0, then B or C is equal to 0. Since A 6= 0, (A → B) = 0
or (A → C) = 0. In either case, one of the conjuncts in the antecedent is equal
to 0, therefore the antecedent is equal to 0.

If (B ∧ C) 6= ∞, A = ∞, then B 6= ∞ and C 6= ∞. But then (A → B) = 0,
and so does the antecedent.

If B∧C and A are positive, and A does not divide B∧C, then either one or
both of B and C are positive. If both are positive, (B ∧ C) = GCD(B, C). So,
A does not divide GCD(B,C). So A does not divide either B or C. But then
(A → B) = 0 or (A → C) = 0, and so does the antecedent. If only one of B
and C is positive, for instance, B, (B ∧ C) = B. So A does not divide B. But
then (A → B) = 0. The case is similar for C.

If A is negative and B ∧ C is positive, then one or more of B and C is
positive. If either are positive, then one of the conditionals in the antecedent is
equal to 0, and so is the antecedent.

In the case where (A → (B ∧ C)) = ∞, ((A → B) ∧ (A → C)) 6= ∞, either
A = 0 or (B ∧ C) = ∞. In the first case, (A → B) = ∞ and (A → C) = ∞,
so ((A → B) ∧ (A → C)) = ∞. In the second case B and C are equal to ∞,
therefore again both conjuncts of the antecedent, and the antecedent itself, are
equal to ∞.

In the case where antecedent and consequent are positive, and ((A → B) ∧
(A → C)) does not divide (A → (B ∧C)), there are three propositional param-
eters, and hence eight ways in which the parameters could be assigned positive
or negative values:

A B C
+ + +
+ + −
+ − +
+ − −
− + +
− + −
− − +
− − −

(+, +, +)

The antecedent is GCD((A → B), (A → C)). Since all parameters are pos-
itive, and the antecedent is as well, A divides B, and A divides C. So the
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antecedent is GCD(B
A

, C
A

). Since the consequent is positive, the A divides the

GCD of B and C, and the consequent becomes GCD(B,C)
A

. A is a non-zero

common divisor of B and C, so GCD(B
A

, C
A

) = GCD(B,C)
A

. So the antecedent
divides the consequent.

(+, +,−)

C is negative, so A → C is A·C, in other words, negative, and the antecedent
is equal to A → B. But B ∧ C is equal to B, so the consequent is also A → B,
hence the antecedent divides the consequent.

(+,−, +)

B is negative, so A → B is A · B, in other words, negative, and the an-
tecedent is equal to A → C. But B ∧C is equal to C, so the consequent is also
A → C, hence the antecedent divides the consequent.

(+,−,−)

B and C are negative, so both conjuncts in the antecedent, and the an-
tecedent itself, are negative.

In the remaining cases, A is negative, so (A → B) = 0 and the antecedent
is equal to 0.

If the antecedent is negative, and consequent positive, then either one or
both conjuncts in the antecedent are negative. If A → B is negative, then one
of A or B is negative. If A is negative, then the consequent is equal to 0. If B
is negative, then the consequent is equal to A → 0, which again is equal to 0.
If both are negative, the consequent is equal to ∞. If A → C is negative, then
one of A or C is negative. We have already shown that A cannot be negative.
If C is negative, then, as for B, the consequent is equal to 0. And again if both
are negative, the consequent is equal to ∞. If both conjuncts are negative, then
the above reasoning shows the consequent not to be positive.

(A6) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

If ((A → C) ∧ (B → C)) 6= 0 and ((A ∨ B) → C) = 0, the consequent is a
conditional, so there are four further cases:

((A∨B) 6= 0, C = 0), (C 6= ∞, (A∨B) = ∞), A∨B and C positive; A∨B
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does not divide C, A ∨ B negative; C positive.

If(A∨B) 6= 0, and C = 0, then (A → C) = 0, so the antecedent is equal to 0.

If C 6= ∞, and (A ∨ B) = ∞, then A or B is equal to ∞. If it is A, then
(A → C) = 0, and so does the antecedent. If it is B, then (B → C) = 0, and so
does the antecedent.

If A ∨ B and C are positive, and A ∨ B does not divide C, then A or B is
positive. If A is positive, then (A ∨ B) = A, so A does not divide C. But then
(A → C) = 0, and so does the antecedent.

If A ∨ B is negative and C is positive then, A or B is negative. If A is
negative, then (A → C) = 0, and so does the antecedent. If B is negative, then
(A → B) = 0, and so does the antecedent.

If ((A ∨ B) → C) 6= ∞ and ((A → C) ∧ (B → C)) = ∞, then both A → C
and B → C equal ∞. Hence either C is equal to ∞, or A and B are equal to
0. In the first case, the consequent becomes (A ∨ B) → ∞, hence it is equal
to ∞. In the second case the consequent becomes 0 → C, hence it is equal to ∞.

If antecedent and consequent are positive, and A does not divide B, there
are three propositional parameters, and hence eight ways in which the parame-
ters could be assigned positive or negative values:

A B C
+ + +
+ + −
+ − +
+ − −
− + +
− + −
− − +
− − −

(+, +, +)

Since the antecedent is positive, both conjuncts are positive, so A divides
C and B divides C, and since the consequent is positive the LCM of A and
B divides C. Which means the antecedent becomes GCD(C

A
, C

B
), while the

consequent is C
LCM(A,B) . Since LCM(A, B) = A·B

GCD(A,B) ,
C

LCM(A,B) = C
A·B

·

GCD(A, B). Hence, the consequent equals GCD(A·C
A·B

, B·C
A·B

), which equals the
antecedent. Hence the antecedent divides the consequent.
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(+, +,−), (+, −, −), (−, +, −), (−, −, −)

In all these cases, C is negative, so A → C and B → C are negative, meaning
the conjunct is negative.

(+, −, +), (−, −, +)

In these cases, B is negative, so (B → C) = 0, meaning the antecedent
equals 0.

(−, +, +)

In this case, A is negative so, as for B, (A → C) = 0, meaning the antecedent
equals 0.

The remaining case where all three are negative is clearly contradictory from
the above.

If the antecedent is negative, and the consequent is positive, then both con-
juncts in the antecedent are negative. So, A is negative, and B and C are
positive. But then, (A ∨ B) = A, so the consequent is (A → C) = 0.

(A7) ¬¬A → A

Suppose this were undesignated. Then it takes the value 0. For →, this
happens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii)
A and B are both positive, and A does not divide B (iv) A is negative and B
is positive. All the above cases imply that the antecedent and consequent take
a different value, but this cannot be.

(A8) (A → ¬B) → (B → ¬A)

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

If (A → ¬B) 6= 0 and (B → ¬A) = 0, since the consequent is a conditional,
there are four more possibilities:

B 6= 0 and ¬A = 0, ¬A 6= ∞ and B = ∞, B and ¬A are positive, and B
does not divide ¬A, B is negative and ¬A is positive.

If B 6= 0 and ¬A = 0, A = ∞. ¬B 6= ∞, so the antecedent is equal to 0.

If ¬A 6= ∞ and B = ∞, ¬B = 0 and A 6= 0, so the antecedent is equal to 0.
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If B and ¬A are positive, and B does not divide ¬A, A and ¬B are negative,
so (A → ¬B) = (A → −B) = (− − B → −A) = (B → −A) = (B → ¬A).
The antecedent and consequent are equal, so the antecedent must divide the
consequent.

If B is negative and ¬A is positive, then ¬B is positive, and A is negative,
so the antecedent is equal to 0.

If (B → ¬A) 6= ∞ and (A → ¬B) = ∞, then B = 0 or ¬A = ∞. If B = 0,
then ¬B = ∞, so the antecedent is equal to ∞. If ¬A = ∞, then A = 0, so the
antecedent is equal to ∞.

If antecedent and consequent are positive, and A → ¬B does not divide
B → ¬A, A and B cannot be ∞ or 0, so they are either positive or negative.
Further, because one parameter is negated in each conditional, only pairs of A
and B with different polarities will come out positive. There are two cases:

+A,−B

Then B → ¬A is − → −, so it is equal to −(¬A) → −B, which, since A
and B are integers, is equal to A → ¬B. Antecedent and consequent are equal,
hence antecedent divides consequent.

−A,+B

Then A → ¬B is − → −, so it is equal to −A → −(¬)B, which, since A
and B are integers, is equal to B → ¬A. Antecedent and consequent are equal,
hence antecedent divides consequent.

If the antecedent is negative, and the consequent is positive, then A → ¬B
is negative, so A is positive, and ¬B is negative. Hence B is positive, and ¬ is
negative. But then the consequent is + → −, and hence negative.

(A9) (A → B) → ((B → C) → (A → C))

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

If antecedent is not equal to 0, and consequent is, then the conditional
(B → C) → (A → C) is equal to 0, so there are four further cases:

If (B → C) 6= 0, (A → C) = 0, then A → C, so there are four possibilities
for A and C:

If A 6= 0 and C = 0, then, either B 6= 0 or B = 0. In both cases, the
antecedent A → B is equal to 0.
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If C 6= ∞ and A = ∞, then either A 6= ∞ or A = ∞. In the first case the
antecedent is equal to ∞, in the second case, to 0.

If A and C are positive, and C does not divide A then, either B is positive
or negative. If it is negative, then the antecedent is + → −, and hence equal to
0. If it is positive, A → B is + → +, and so equals 0 or B

A
(clearly it cannot

equal 0). B → C is + → + and so, since it cannot equal 0 without making
the consequent equal to ∞, it is C

B
. So, the consequent becomes C

B
→ C

A
. The

stipulation above becomes C
B

does not divide C
A

, but clearly it does. Some basic
algebra shows us that:

C
A
C
B

=
C

A
·
B

C
=

B

A

We already have the fact that B
A

is an integer.

If A is negative, and C is positive, then B is either positive or negative. If
it is positive, the antecedent is − → +, and hence 0. If it is negative, B → C is
− → +, hence equal to 0. But then the consequent is 0 → a, and hence equal
to ∞.

If (A → C) 6= ∞, (B → C) = ∞ then, either B = 0 or C = ∞. In the first
case, A → B becomes A → 0. Either A = 0 or A 6= 0. In the first case the
antecedent equals ∞. In the second case, the antecedent equals 0. If C = ∞,
then the antecedent is ∞.

If (B → C) and (A → C) are positive, and the former does not divide the
latter then, there are 8 cases for distribution of positivity and negativity:

A B C
+ + +
+ + −
+ − +
+ − −
− + +
− + −
− − +
− − −

We can rule out the cases where only one of B and C, or only one of A and
C are negative, since these will make one of the conditionals negative.
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Hence we have only one case to consider: the case where all three are nega-
tive:

−,−,−

So, B → C = −C → −B = −B
−C

. A → C is −C → −A which is −A
−C

, and the

antecedent is A → B = −B → −A = −A
−B

.

Rationalising, the consequent is such that B
C

does not divide A
C

. But clearly
it does:

A
C
B
C

=
A

C
·
C

B
=

A

B

The fact that the antecedent is non-zero gives us that A
B

is an integer.

If (B → C) is negative, and (A → C) is positive then, either both A and
C are negative, or both are positive. In the first case, if B is negative, then
B → C is positive. If B is positive, then A → B is 0. In the second case, if B
is positive, B → C is positive. If B is negative, then the antecedent is 0.

If the antecedent is equal to ∞ and the consequent is not, then either A = 0
or B = ∞. In the first case, (A → C) = ∞, and so does the consequent. In the
second case, (B → C) = ∞, and so does the consequent.

If the antecedent and consequent are positive, and the antecedent does not
divide the consequent then, there are 8 possibilities with regards to distribution
of polarity among the parameters, as follows:

A B C
+ + +
+ + −
+ − +
+ − −
− + +
− + −
− − +
− − −

Since the antecedent is positive, we can disregard the cases where A and B
are not the same polarity, cutting out the middle four. So there are four cases
to consider:
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A B C
+ + +
+ + −
− − +
− − −

+, +, +

All parameters are positive, and so is the antecedent, A → B is equal to B
A

.
The consequent is positive, so either both B → C and A → C are positive or
negative. If they are negative, then one of the parameters in them is negative.
If they are positive, then either their antecedents divide their consequents or
not. If not, then they are equal to 0. So they are positive and their antecedents
divide their consequents, in other words they are C

B
and C

A
respectively. Since

the consequent is positive, this equals
C
A
C
B

, which equals C
A
· B

C
, which equals B

A
.

The antecedent and consequent are equal, therefore the antecedent divides the
consequent.

+, +,−

A is positive, and C is negative, so A → C is A · C. B is positive and C is
negative, so B → C is B · C. A · C and B · C are negative so A · C → B · C is

−(B ·C) → −(A ·C). The consequent is positive, so it is equal to −(A·C)
−(B·C) = A

B
.

The antecedent is also positive, and both A and B are positive, so it equals B
A

.
B
A

divides A
B

:

A
B
B
A

= A
B
· A

B
= A2

B2 , and if A
B

is a whole number, A2

B2 is also.

−,−, +

B is positive, and C negative, so B → C is equal to C ·B. A is negative and
C is positive, so A → C is equal to 0. C ·B is not equal to 0, so the consequent
is 0.

−,−,− All parameters are negative, so the antecedent is −B → −A =
−A
−B

= A
B

. The consequent is (−C → −B) → (−C → −A). Since the consequent

is positive, neither half can be equal to 0, so this becomes −B
−C

→ −A
−C

= B
C

→ A
C

.

Since the consequent is positive, this is equal to
A
C
B
C

= A
C
· C
B

= A
B

. The antecedent

and consequent are equal, therefore the antecedent divides the consequent.

If the antecedent is negative, and the consequent is positive, then A → B is
negative. So, either A or B is negative. The consequent is positive, so neither
B → C nor A → C is negative. By looking at the possible distributions of
polarity, we can see that this case is contradictory:
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A B C
+ + +
+ + −
+ − +
+ − −
− + +
− + −
− − +
− − −

The cases where both A and B are positive or negative (the first two and
last two) can be disposed of, as can the cases where either but not both of B, C
(the seventh and third) and A, C (the fourth and fifth) are negative . There are
no remaining cases.

(A10) (A → B) → ((C → A) → (C → B))

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

If (A → B) 6= 0, ((C → A) → (C → B)) = 0 then there are four further
cases:

(C → A) 6= 0, (C → B) = 0

Since C → B is equal to 0, there are four further cases.

If C is not equal to 0 and B is equal to 0, then A is either equal to 0 or not.
If it is equal to 0 then, C → A is equal to 0, and the consequent is equal to ∞.
If it is not equal to 0 then the antecedent is equal to 0.

If B 6= ∞ and C = ∞, then either A = ∞ or not. If A = ∞, then
(A → B) = 0. If A 6= ∞ then (C → A) = 0.

If C and B are positive, and C does not divide B, then either A is positive
or it is not. If it is positive, since C → A 6= 0, C → A = A

C
. And since A → B

is not equal to 0, (A → B) = B
A

. Since A
C

and B
A

are whole numbers A
C

· B
A

is a whole number. But this is clearly B
C

, so C does divide B. If A is not
positive, then it is 0,∞ or negative. If it is 0, then C → A = 0. If it is ∞ then
A → B = 0. If it is negative, then C → A is negative.

If C is negative, and B positive then, A is either 0, ∞, negative or positive.
In the first case, C → A = 0, in the second A → B = 0. In the third case,
A → B is 0. In the fourth case, C → A is 0.
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(C → B) 6= ∞, (C → A) = ∞

Since (C → A) = ∞, either C = 0 or A = ∞. In the first case, C → B is
equal to ∞. In the second case, A → B is equal to 0, (unless B is equal to ∞,
but, if that were the case C → B is equal to ∞.)

C → B and C → A are positive and the former does not divide the latter

Since both are positive, if C is positive, A and B are also. And if C is neg-
ative, so are A and B. If C is positive, (C → B) = B

C
and (C → A) = A

C
.

B
C

· C
A

= B
A

. Thus B
A

is not a whole number; A does not divide B. But

then A → B is equal to 0. If C is negative, (−B → −C) = −C
−B

= C
B

and

(−A → −C) = −C
−A

= C
A

. C
B
· A

C
= A

B
. Thus A

B
is not a whole number; B does

not divide A; −B does not divide −A. But then −B → −A is equal to 0.

C → B is positive and C → A is negative

Since C → A is negative the polarity of C and A must be different. So either
C is positive and A negative, or vice versa. In the first case, B is either positive
or negative (the cases where B is anything else were dealt with above). If B is
positive, A → B is equal to 0. If it is negative, C → B is equal to C · B, and
is hence negative. In the case where A is positive, and C negative, again B is
either positive or negative. If it is positive, then C → B is negative. If it is
negative, then C → A is positive.

If ((C → A) → (C → B)) 6= ∞, (A → B) = ∞ then, A = 0, or B = ∞. In
the first case, either C = 0 or not. If C = 0, (C → B) = ∞, and so does the
antecedent. If C 6= 0 then (C → A) = 0, and the antecedent is equal to ∞. In
the second case, (C → B) = ∞ and so does the antecedent.

If A → B and (C → A) → (C → B) are positive and A → B does not divide
(C → A) → (C → B) then, since antecedent and consequent are conditionals,
both both halves must be either positive or negative. (If either or both are 0 or
∞ the whole will not be positive, and if one is positive and one negative, the
whole will be negative or 0.)

So we have four possibilities:

A, B (C → A), (C → B)
+ +
+ −
− +
− −

+, +
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A and B are positive, as is C → A, thus C is also positive. So, the an-

tecedent is B
A

, and the consequent is
B
C
A
C

= B
C

· C
A

= B
A

. Since antecedent and

consequent are equal, antecedent divides consequent.

+,−

A and B are positive, but C → A is negative. Looking at the definition of
negative → we can see that this situation is impossible.

−, +

A and B are negative, but C → A and C → B are positive. Thus C is
negative, and (A → B) = A

B
, C → A = C

A
, C → B = C

B
. Thus the consequent

is C
B

· A
C

= A
B

, and the antecedent is A
B

. Since antecedent and consequent are
equal, antecedent divides consequent.

−,−

A and B are negative, and so are C → A and C → B. Thus C is positive,
and C → A and C → B are equal to C · A and C · B respectively. The an-
tecedent is equal to A

B
. And the consequent is equal to C·A

C·B
= A

B
. Antecedent

and consequent are equal, so antecedent divides consequent.

If A → B is negative and (C → A) → (C → B) is positive then, either A or
B is negative (but not both), and either both C → A and C → B are positive,
or they are both negative. So we have four possibilities:

We can see that in all four cases, because the polarities of A and B are
different, and because both sides of the conditional involve C, the sides of the
conditional will have different polarities. But this is not the case.

(A11) (A → (A → B)) → (A → B)

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

If (A → (A → B)) 6= 0, (A → B) = 0 then, there are four further possibili-
ties:

If A 6= 0, B = 0, then the antecedent is equal to 0.

If A = ∞, B 6= ∞, then the antecedent is equal to 0.

If A, B positive, and A does not divide B, then the antecedent is equal to
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B
A

A
= A2

B
. Since B

A
is not a whole number, neither is A2

B
, thus the antecedent is

equal to 0.

If A is negative, and B is positive, then A → B is equal to 0, and A is not
equal to 0, so the antecedent is equal to 0.

If (A → B) 6= ∞, (A → (A → B)) = ∞ then, either A is equal to 0, or
A → B is equal to ∞. In either case, the antecedent is equal to ∞.

If A → (A → B) and A → B are positive, and the former does not divide
the latter, then either A and B are positive, in which case the antecedent is

equal to
B
A

A
= B

A2 wheras the consequent is equal to B
A

, in which case the result

when the consequent is divided by the antecedent is B
A
· A2

B
= A. But A is a

whole number by definition so the antecedent does divide the consequent.

Otherwise, A and B are negative, and the antecedent is equal to −(−B →
−A) → −A, wheras the consequent is −B → −A. So, the antecedent is

−A

−(−A
−B

)
= A

A
B

= B, but B is negative, so the antecedent is negative.

If A → (A → B) is negative, and A → B is positive, then the polarities of
A and B must be the same, and the polarities of A and A → B must differ. So,
since A → B is positive, A, and B, are negative. But then the antecedent is
equal to 0.

(A12) A → ((A → B) → B)

Suppose this were undesignated. Then it takes the value 0. For →, this hap-
pens in one of four cases: (i) A 6= 0 and B = 0 (ii) B 6= ∞ and A = ∞ (iii) A and
B are both positive, and A does not divide B (iv) A is negative and B is positive.

If A 6= 0, ((A → B) → B) = 0 then, there are four further possibilities:

If (A → B) 6= 0, B = 0, then the only way for A → B not to equal 0, is for
A to equal 0, but then the antecedent is equal to 0.

If (A → B) = ∞, B 6= ∞, then A, the antecedent, is equal to 0.

If A → B, B positive, and A → B does not divide B, then A is also positive,
so B

A
does not divide B. But B

B
A

= B
·

A
B

= A, and A is a whole number.

If A → B is negative, and B is positive, then A is negative, but then A → B
is equal to 0.

If ((A → B) → B) 6= ∞, A = ∞ then, either B = ∞ or not. If it does, then
the antecedent is equal to ∞. If it does not, then A → B is equal to 0, and the
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antecedent is equal to ∞.

If A and (A → B) → B are positive, and the former does not divide the
latter, then B must be positive so, the consequent is equal to B

B
A

= A; since

antecedent and consequent are equal, antecedent divides consequent.

If A is negative, and (A → B) → B is positive, then the polarities of A → B
and B must be the same. But if B is negative, then A → B is positive, and if
B is positive, then A → B is negative.

(R1) A, A → B ⊢ B

Suppose the premises were designated, and conclusion undesignated. Then
the value of B is 0. A does not equal 0, so A → B does equal 0 and one of the
premises is undesignated.

(R2) A, B ⊢ A ∧ B

Suppose the premises were designated, and conclusion undesignated. Then
A ∧ B = 0. So, either A or B is equal to 0, hence one of the premises is undes-
ignated.
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9. Use the results of the previous problem to show that the following do not
hold in R:

I will show the following in the many valued logic of question 8 as far as
possible. Since this is a sub-logic of that of 10.5.6, the result follows.

(a) � p → (p → p)

The simplest countermodel is perhaps that where p is a negative integer.
Then p → p is −p → −p = 1, and so (p → (p → p)) = 0.
.

(b) � p → (q → (p ∧ q))

The simplest countermodel is perhaps that where p = ∞ and q is a pos-
itive integer. Then p ∧ q equals q, so q → (p ∧ q) = q → q = 1. p = ∞,
(q → (p ∧ q)) 6= ∞, so (p → (q → (p ∧ q))) = 0

(c) (p ∧ q) → r � (p → r) ∨ (q → r)

Take a valuation where all parameters are positive, but p does not divide r,
and q does not divide r, but the GCD of p and q does divide r. For instance
p = 3, q = 4, r = 1. In this case, the conclusion is equal to 0, (since 1

3 and 1
4

are not whole numbers), and hence undesignated, but the antecedent is equal
to 1 (since the GCD of 3 and 4 is 1, and 1

1 = 1), and so designated.

(d) (p → q) ∧ (r → s) � (p → s) ∨ (r → q)

Take a valuation where all parameters are positive, but s
p

and q
r

are not whole

numbers, while the LCM of q
p

and s
r

is. For instance p = 3, q = 6, r = 4, s = 8.

In this case, the conclusion is equal to 0, (since 8
6 and 6

4 are not whole num-
bers), but the antecedent is equal to 2 (since the LCM of 8

4 = 2, and 6
3 = 2, is 2).

(e) ¬(p → q) � p

There is a mistake in the question - this is in fact valid in the logic of ques-
tion 8 - here is a proof:

Imagine p were undesignated - i.e. 0. Then p → q is ∞, and ¬(p → q) is 0 -
i.e. undesignated.

However, the above is invalid in R - I will show this by in the many valued
logic of 10.5.6 which is a sublogic of R:

Take the valuation where p = 1 and q = 0. Then p is undesignated, because
all values without primes are undesignated (see p. 10.5.6). However, the value
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of p → q is 0, meaning the value of ¬(p → q) is 0′, which is designated.

10. Show that the following are valid in C+
B :

(a) ⊢ A > A

A > A,−0
0rA1
A, +1
A,−1
⊗

(b) ⊢ (A > ¬¬A) ∧ (¬¬A > A)

(A > ¬¬A) ∧ (¬¬A > A),−0

A > ¬¬A,−0
0rA1
A, +1

¬¬A,−1
¬A, +1#

A,−1
⊗

¬¬A > A,−0
0r¬¬A1
¬¬A, +1

A,−1
¬A,−1#

A, +1
⊗

(c) ⊢ (A ∧ B) > A

(A ∧ B) > A,−0
0rA∧B1

A ∧ B, +1
A,−1
A, +1
B, +1
⊗

(d) A > B, A > C ⊢ A > (B ∧ C)

A > B, +0
A > C, +0

A > (B ∧ C),−0
0rA1
A, +1

B ∧ C,−1
B, +1
C, +1

B,−1
⊗

C,−1
⊗
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(e) A, A > B ⊢ B

A, +0
A > B, +0

B,−0

A,−0
⊗

A, +0
0rA0
B, +0
⊗

(f) A → B ⊢ A > B

A → B, +0
A > B,−0

0rA1
A, +1
B,−1

A,−1
⊗

B, +1
⊗
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11. This exercise gives a proof of the relevance of the logic B.

(a) Let ⊥ and ⊥∗ be a pair of non-normal worlds such that every proposi-
tional parameter is true at ⊥ and false at ⊥∗. Suppose that R ⊥⊥⊥, R ⊥∗⊥⊥∗,
and that each world accesses no other worlds. Show that every formula is true
at ⊥ and false at ⊥∗

This can be shown by a simple induction:

The atomic case requires no argument.

The cases for all connectives other than ¬, and → are as in the proof of their
classical truth-functionality.

For ¬A, suppose ¬A were not true at ⊥. Then A is not false at ⊥∗. But, by
induction hypothesis, A is false at ⊥∗.

Suppose ¬A were not false at ⊥∗. Then A is not true at ⊥. But by induction
hypothesis, A is true at ⊥.

For A → B, by induction hypothesis, A and B are true at ⊥, and false at
⊥∗. By stipulation R ⊥⊥⊥, R ⊥∗⊥⊥∗ and each world accesses no other worlds.

R ⊥⊥⊥, and A and B are true at ⊥. Since ⊥ is not related to any other
worlds, A → B is true at ⊥, as required.

R ⊥∗⊥⊥∗; A is true at ⊥, and B is false at ⊥∗. Thus A → B is false at ⊥∗,
as required.

(b) Let w and w∗ be a pair of non-normal worlds such that Rw ⊥ w and
Rw∗ ⊥ w∗. Using part (a), show that: (i) if every parameter in A is true at w
and false at w∗, the same is true of A; (ii) if every parameter in B is false at w
and true at w∗, the same is true of B.

For (i) and (ii), the argument for w and w∗ is the same as that for ⊥ and
⊥∗ in 11(a).

(c) Use this to show that if ⊢B A → C, A and C share a parameter.

Suppose A and C do not share any propositional parameter. Then there is an
interpretation I = 〈W, N, R, ∗, v〉 where W = {w0, w1, w

∗

0 , w
∗

1}, N = {w0, w
∗

0},
R such that Rw1w

∗

1w1, Rw∗

1w1w
∗

1 which makes every propositional parameter in
A true at w, and every parameter in C false, hence by (b)(i) this interpretation
makes A true at w and C false at w as in (b)(i).Hence it is not the case that
A → C.
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12. By defining suitable accessibility relations for >, modify the proof of the
previous question to show the same for > in C+

B (Hint: For every non-normal
world, w, set fA(w) = {w}.)

(a) Let ⊥ and ⊥∗ be a pair of non-normal worlds such that every proposi-
tional parameter is true at ⊥ and false at ⊥∗. Suppose that for all non-normal
worlds w, for all formulas A fA(w) = {w}, and that no other restrictions on >
obtain.Show that every formula is true at ⊥ and false at ⊥∗

This can be shown by a simple induction:

The atomic case requires no argument.

The cases for all connectives other than ¬, and → are as in the proof for C.

For ¬A, suppose ¬A were not true at ⊥. Then A is not false at ⊥∗. But, by
induction hypothesis, A is false at ⊥∗.

Suppose ¬A were not false at ⊥∗. Then A is not true at ⊥. But by induction
hypothesis, A is true at ⊥.

Suppose A > B were not true at ⊥. Then there is a world w′ such that
w′ ∈ fA(⊥), and B is false at w′. But the only such w′ is ⊥ itself, and by
induction hypothesis B is true at ⊥.

Suppose A > B were not false at ⊥∗. Then there is no world w′ such that
w′ ∈ fA(⊥), and B is false at w′. But ⊥∗ itself is such a w′, and B is false at ⊥∗.

(b) Let w and w∗ be a pair of non-normal worlds such that w ∈ fA(⊥) and
w∗ ∈ fA(⊥∗). Using part (a), show that: (i) if every parameter in A is true at
w and false at w∗, the same is true of A; (ii) if every parameter in B is false at
w and true at w∗, the same is true of B.

For (i) and (ii) the argument is the same as that in 12(a).

(c) Use this to show that if ⊢B A → C, A and C share a propositional pa-
rameter.

Suppose A and C do not share any propositional parameter. Then there
is an interpretation I = 〈W, N, ∗, v, f〉 such that W = {w0, w1, w

∗

0 , w∗

1}, N =
{w0, w

∗

0}, w1 ∈ fA(w1)w1 ∈ fA(w∗

1) which makes all parameters in A true, and
all parameters in C false. Likewise w∗ makes all parameters in A false, and
those in C true. By (b)(i), w makes A true, and C false. Hence it is not the
case that A → C.
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13. Let D(n) be the disjunction of all formulas of the form pi ↔ pj for all
i and j such that 0 ≤ i < j ≤ n. Using the interpretation of problem 8, show
that for all n, D(n) is not logically valid in R. Hence show that neither R nor
any weaker relevant logic is finitely-many valued. (Hint: See the similar proofs
for modal and intuitionist logics, 7.11.1-7.11.4.)

Definition: Let A ↔ B be (A → B) ∧ (B → A).
Lemma: For no n is Dn+1 a logical truth of any relavent logic weaker than R.

I will simply show the result in the many valued logic of question 8, that R
has been shown to be a sub-logic of. Clearly if the result holds in that logic, it
will hold in the weaker R.

(Is this true - it would seem to be disproven by the example we found above
which was invalid in R, and valid in the many valued logic of question 8!)

Dn+1 is the disjunction of all sentences of the form (pi → pj) ∧ (pj → pi),
where 1 ≤ i < j ≤ n + 1. There is an interpretation where pi takes the number
i, (and pj the number j). This interpretation makes all disjunctions in Dn+1

undesignated, and hence Dn+1 itself undesignated also.

To see this, simply note that if a divides b, a → b = b/a; otherwise a → b
= 0. Clearly since pi and pj are distinct, one of them is a lower number than
the other. One of the conjunctions will have the lower number on its LHS (e.g.
2 → 3), and this will always make one conjunction equal to 0. If one of the
conjunctions is equal to 0, the whole conjunction is also. since thi sis true for
any i and j, for any n the interpretation where pi = i and pj = j shows Dn to
be invalid.

Theorem: No relevant logic weaker than R is a finitely many-valued logic.

Suppose that there were such, and that it had n truth-values. Since we have
A2 in R, �R A → (A ∨ B) , A �R (A ∨ B) and,

(i) whenever A ∈ D, A ∨ B ∈ D

Since we have A3 in R, �R (A ∧ B) → A, A ∧ B �R A and,

(ii) Whenever A ∧ B ∈ D, A ∈ D.

(and the same for B in both cases). Moreover, since �R p → p, �R p ↔ p:
(iii) for any x ∈ V , f→(x, x) ∈ D.

Now consider any interpretation v. Since there are only n truth values, for
some j and k such that 1 ≤ j < k ≤ n + 1, v(pj) = v(pk). Hence by (iii)
v(pj → pk) ∈ D, and v(pk → pj) ∈ D. By (ii), v(pk ↔ pj) ∈ D, and by (i),
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v(Dn+1) ∈ D. Thus Dn+1 is logically valid in R, which it is not by the preceding
lemma.

15. *Check the details omitted in 10.8.

10.8.2 Check the cases for T8 - T11 in the Soundness Lemma for B+C8-C11.

T8: Suppose that rxyz appears on b, and that we apply the rule to get rxz̄ȳ.
By assumption Rf(x)f(y)f(z), so by C8 Rf(x)f(z∗)f(y∗), as required.

T9: Suppose that rxyz and rzuv appear on b and that we apply the rule to
get rxuj, ryjv. By assumption, Rf(x)f(y)f(z), and Rf(z)f(u)f(v), so by C9,
Rf(x)f(u)f(j) and Rf(y)f(j)f(v), as required.

T10: Suppose that rxyz and rzuv appear on b, and that we apply the rule
to get ryuj, rxjv. By assumption, Rf(x)f(y)f(z), and Rf(z)f(u)f(y), so by
C10, Rf(x)f(u)f(j) and Rf(x)f(j)f(v), as required.

T11: Suppose that rxyz appears on b, and that we apply the rule to get
rxyj, rjvz. By assumption, Rf(x)f(y)f(z), so by C11, Rf(x)f(y)f(j) and
Rf(j)f(y)f(z), as required.

Check that each of the constraints C8-C11 is satisfied, given that the appro-
priate rule is in force.

C8: Suppose that T8 has been applied. Then rxyz appears on the branch,
and so does rxz̄ȳ. By induction hypothesis, Rwxwywz and Rwxw∗

zw∗

y, as re-
quired.

C9: Suppose that T9 has been applied. Then rxyz appears on the branch,
and so does rxuj, ryjv. By induction hypothesis, Rwxwywz and Rwxwuwj , and
Rwywjwv, as required.

C10: Suppose that T10 has been applied. Then rxyz appears on the branch,
and so does ryuj, rxjv. By induction hypothesis, Rwxwywz and Rwywuwj , and
Rwxwjwv, as required.

C11: Suppose that T11 has been applied. Then rxyz appears on the branch,
and so does rxyj, rjvz. By induction hypothesis, Rwxwywz and Rwywuwj , and
Rwxwjwv, as required.

10.8.2b Check the new rules of 10.4a.3 in the Soundness Lemma for the
tableaux for content-inclusion.

Suppose that the rule to add x � x to the branch is applied to b. If x � x
is added to the branch, f(x) ⊑ f(x) since ⊑ is reflexive, as required.
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Suppose that x � y and y � z appear on b, and that the rule to add x � z
is applied. By induction hypothesis, wx ⊑ wy and wy ⊑ wz, so if vwx

(p) = 1,
vwy

= 1, and if vwy
= 1 then vwz

= 1. Thus if vwx
(p) = 1, vwz

= 1, as required.

Suppose that x � y and p, +x appear on b, and that the rule to add p, +y
is applied. By induction hypothesis, wx ⊑ wy , so if vwx

(p) = 1, vwy
= 1, and

vwx
(p) = 1. Thus vwy

(p) = 1, as required.

Suppose that x � y appears on b, and that the rule to add ȳ � z̄ is applied.
By induction hypothesis, wx ⊑ wy, so if vwx

(p) = 1, vwy
= 1. Thus if vw∗

y
= 1,

vw∗

x
= 1, as required.

Suppose that x � y and ryzw and that the rule to split the branch with x
and z � w, or x, and rxzw, is applied. By induction hypothesis, wx ⊑ wy and
Rwywzww , so if vwx

(p) = 1, vwy
= 1. By clause 3, wx is either normal or not.

If it is normal, then wz ⊑ ww, and I is faithful to the left branch. If it is not
normal, then Rwxwzww, and I is faithful to the right branch, as required.

Suppose that the rule to add $0 to the branch is applied to b. w0 is normal,
as required.

Suppose that $x appears on b, and that the rule to add rxyy is applied. By
induction hypothesis, wx is normal. Thus for any y, Rwxwywy, as required.

Suppose that $x and rxyz appear on b, and that the rule to add y = z is
applied. By induction hypothesis, wx is normal, and Rwxwywz , so wy = wz, as
required.

10.8.2d: Check that the induced interpretation has the right property in
each case for each content-inclusion rule T12-T16.

Suppose that T12 has been applied on b. By induction hypothesis, Rwxwywz ,
so by C12, for some wx such that wy ⊑ wj , Rwbwxwz, as required by C12.

Suppose that T13 has been applied on b. By induction hypothesis, wx is
normal, and w∗

x ⊑ wx, as required by C13.

Suppose that T14 has been applied on b. By induction hypothesis, either wx

is normal, in which case wx ⊑ wx, or wx is non-normal, in which case Rwxw∗

xwx,
as required by C14.

Suppose that T15 has been applied on b. By induction hypothesis, Rwxwywz

and wx ⊑ wz , as required by C15.
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Suppose that T16 has been applied on b. By induction hypothesis, Rwxwywz ,
and either wx ⊑ wz, or wy ⊑ wz, as required by C16.
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