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1. Complete the details left as exercises in 9.4.1, 9.4.2, 9.6.6, 9.6.9, 9.6.10
and 9.7.10.

9.4.1 Show that 2K4
p → (q ∨ ¬q) and 2K4

(p ∧ ¬p) → q

2K4
p → (q ∨ ¬q)

p → (q ∨ ¬q),−0
p, +1

q ∨ ¬q,−1
q,−1
¬q,−1

Counter-model such that:

W = {w0, w1}; pρw1
1

This can be represented in the following diagram:

w0 w1

+p

−q

−¬q

Let us check that the interpretation works:

p is true at w1, however both q and ¬q are untrue, therefore p → (q ∨¬q) is
not true at w0.
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2K4
(p ∧ ¬p) → q

(p ∧ ¬p) → q,−0
p ∧ ¬p, +1

q,−1
p, +1
¬p, +1

Counter-model such that:

W = {w0, w1}; pρw1
1, pρw1

0

This can be represented in the following diagram:

w0 w1

−q

+p

+¬p

Let us check that the interpretation works:

Both p and ¬p are true at w1, making p ∧ ¬p true there. However q is not
true at w1 so (p ∧ ¬p) → q is not true at w0.

9.4.2 Show that in K4, (if � ¬A then � A → B) does not hold.

Consider the case where A = ¬(p → p) and B = q. Then � ¬A:

¬¬(p → p),−0
p → p,−0

p, +1
p,−1
⊗

However, 2 A → B:

¬(p → p) → q,−0
¬(p → p), +1

q,−1
p, +2
¬p, +2

The counter-model defined by this tablueau can be depicted as follows:

w0 w1 w2

−q +p

+¬p
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Since p is both true and not true at w2, p → p is false, and ¬(p → p) is true,
at w1. However q is not true at w1, so ¬(p → p) → q is not true at w0.

9.6.6 In K∗, � p → (q → q)

p → (q → q),−0
p, +1

q → q,−1
q, +2
q,−2
⊗

9.6.9 K∗ and N∗ validate contraposition: p → q � ¬q → ¬p

The below tableau shows this for both K∗ and N∗.

p → q, +0
¬q → ¬p,−0

¬q, +1
¬p,−1
q,−1#

p, +1#

p,−1#

⊗
q, +1#

⊗

9.6.10 Show that the relation semantics (normal and non-normal) verify
p ∧ ¬q � ¬(p → q).

The same tableau shows this for relational K4 and relational N4

p ∧ ¬q, +0
¬(p → q),−0

p, +0
¬q, +0

p,−0
⊗

¬q, +0
⊗
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9.7.10 Take a ∗ interpretation < W, N, ∗, v > where W = {w0, w1, w2}; N =
{w0}, w

∗

0 = w0, w
∗

1 = w2, w
∗

2 = w1; for every propositional parameter or condi-
tional, D in A, vw1

(D) = 1 and vw2
(D) = 0; for every propositional parameter

or conditional, D, in B, vw1
(D) = 0, and vw2

(D) = 1. Check that vw1
(A) = 1,

and vw1
(B) = 0, and hence show that vw0

(A → B) = 0.

We must show that, for every formula C made up of parameters and con-
ditionals in A, vw1

(C) = 1 and vw2
(C) = 0 (and for every formula E in B,

vw1
(E) = 0 and vw2

(E) = 1. This can be shown in an induction on the com-
plexity of A and B similar to that of 9.7.9.

The basis case is that of parameters and conditionals, and is true by stipu-
lation.

The other cases are for A and B of the form ¬C, C ∧ D, and C ∨ D.

¬C

For A, by induction hypothesis, vw2
(C) = 0. Since w2 is the star world of

w1, vw1
(¬C) = 1 as required.

For B, by induction hypothesis, vw2
(C) = 1. Since w2 is the star world of

w1, vw1
(¬C) = 0, as required.

C ∧ D

For A, by induction hypothesis, vw1
(C) = 1, and vw1

(D) = 1. So, vw1
(C ∧

D) = 1, as required. By induction hypothesis, vw2
(C) = 0 and vw2

(D) = 0, so
vw2

(C ∧ D) = 0 , as required

For B, by induction hypothesis, vw1
(C) = 0, and vw1

(D) = 0. So, vw1
(C ∧

D) = 0, as required. By induction hypothesis, vw2
(C) = 1, and vw2

(D) = 1.
Thus vw2

(C ∧ D) = 1, as required.

C ∨ D

For A, by induction hypothesis, vw1
(C) = 1, and vw1

(D) = 1. So, vw1
(C ∨

D) = 1, as required. By induction hypothesis, vw2
(C) = 0 and vw2

(D) = 0, so
vw2

(C ∨ D) = 0 , as required

For B, by induction hypothesis, vw1
(C) = 0, and vw1

(D) = 0. So, vw1
(C ∨

D) = 0, as required. By induction hypothesis, vw2
(C) = 1, and vw2

(D) = 1.
Thus vw2

(C ∨ D) = 1, as required.
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Since all sentences are built from propositional parameters, conditionals, and
the above extensional connectives, and we have seen that no matter which of
these are used, if A and B are as stipulated, vw1

(A) = 1, and vw1
(B) = 0,

vw0
(A → B) = 0

2. Show the following in K4 (where A ↔ B is (A → B) ∧ (B → A)):

(a) ⊢ A → A

A → A,−0
A, +1
A,−1
⊗

(b) ⊢ A ↔ ¬¬A

⊢ (A → ¬¬A) ∧ (¬¬A → A)

(A → ¬¬A) ∧ (¬¬A → A),−0

A → ¬¬A,−0
A, +1

¬¬A,−1
A,−1
⊗

¬¬A → A,−0
¬¬A, +1
A,−1
A, +1
⊗

(c) ⊢ (A ∧ B) → A

(A ∧ B) → A,−0
A ∧ B, +1

A,−1
A, +1
B, +1
⊗

(d) ⊢ A → (A ∨ B)

A → (A ∨ B),−0
A, +1

A ∨ B,−1
A,−1
B,−1
⊗
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(e) ⊢ (A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C))

⊢ ((A∧(B∨C)) → ((A∧B)∨(A∧C)))∧(((A∧B)∨(A∧C)) → (A∧(B∨C)))

((A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))) ∧ (((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C))),−0

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)),−0
A ∧ (B ∨ C), +1

(A ∧ B) ∨ (A ∧ C),−1
A, +1

B ∨ C, +1
A ∧ B,−1
A ∧ C,−1

B, +1

A,−1
⊗

B,−1
⊗

C, +1

A,−1
⊗

B,−1

A,−1
⊗

C,−1
⊗

((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C)), 0
(A ∧ B) ∨ (A ∧ C), +1

A ∧ (B ∨ C),−1

A ∧ B, +1
A, +1
B, +1

A,−1
⊗

B ∨ C,−1
B,−1
C,−1
⊗

A ∧ C, +1
A, +1
C, +1

A,−1
⊗

B ∨ C,−1
B,−1
C,−1
⊗

(f) A → B, A → C ⊢ A → (B ∧ C)

A → B, +0
A → C, +0

A → (B ∧ C),−0
A, +1

B ∧ C,−1

B,−1

A,−1
⊗

B, +1
⊗

C,−1

A,−1
⊗

B, +1

A,−1
⊗

C, +1
⊗
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(g) A → C, B → C ⊢ (A ∨ B) → C

A → C, +0
B → C, +0

(A ∨ B) → C,−0
A ∨ B, +1

C,−1

A, +1

A,−1
⊗

C, +1
⊗

B, +1

A,−1

B,−1
⊗

C, +1
⊗

C, +1
⊗

(h) A → C ⊢ (A ∧ B) → C

A → C, +0
(A ∧ B) → C,−0

A ∧ B, +1
C,−1
A, +1
B, +1

A,−1
⊗

C, +1
⊗

(i) ⊢ ((A → B) ∧ (A → C)) → (A → (B ∧ C))

((A → B) ∧ (A → C)) → (A → (B ∧ C)),−0
(A → B) ∧ (A → C), +1

A → (B ∧ C),−1
A → B, +1
A → C, +1

A, +2
B ∧ C,−2

B,−2

A,−2
⊗

B, +2
⊗

C,−2

A,−2
⊗

B, +2

A,−2
⊗

C, +2
⊗
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(j) ⊢ ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

((A → C) ∧ (B → C)) → ((A ∨ B) → C),−0
(A → C) ∧ (B → C), +1

(A ∨ B) → C,−1
A → C, +1
B → C, +1
A ∨ B, +2

C,−2

A, +2

A,−2
⊗

C, +2
⊗

B, +2

A,−2

B,−2
⊗

C, +2
⊗

C, +2
⊗

(k) A → B ⊢ (B → C) → (A → C)

A → B, +0
(B → C) → (A → C),−0

B → C, +1
A → C,−1

A, +2
C,−2

A,−2
⊗

B, +2

B,−2
⊗

C, +2
⊗

(l) A → B ⊢ (C → A) → (C → B)

A → B, +0
(C → A) → (C → B),−0

C → A, +1
C → B,−1

C, +2
B,−2

A,−2

C,−2
⊗

A, +2
⊗

B, +2
⊗
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(m) A → B, B → C ⊢ A → C

A → B, +0
B → C, +0
A → C,−0

A, +1
C,−1

A,−1
⊗

B, +1

B,−1
⊗

C, +1
⊗

3. Show that the following are not true in K4 and specify a counter-model.

(a) 0 (p ∧ (¬p ∨ q)) → q

(p ∧ (¬p ∨ q)) → q,−0
p ∧ (¬p ∨ q), +1

q,−1
p, +1

¬p ∨ q, +1

¬p, +1 q, +1
⊗

Counter-model such that:

W = {w0, w1}; pρw1
1, pρw1

0

This can be represented in the following diagram:

w0 w1

+p

−q

+¬p

Let us check that the interpretation works:

p is true at w1, as is ¬p, making p∧ (¬p∨ q) true at w1. q is not true at w1.
Therefore the conclusion (p ∧ (¬p ∨ q)) → q is not true at w0
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(b) (p ∧ q) → r ⊢ p → (¬q ∨ r)

(p ∧ q) → r, +0
p → (¬q ∨ r),−0

p, +1
¬q ∨ r,−1
¬q,−1
r,−1

p ∧ q,−1

p,−1
⊗

q,−1

p ∧ q,−0

p,−0 q,−0

r, +0

r, +1
⊗

Counter-model from open left-most branch such that:

W = {w0, w1}; pρw1
1

This can be represented in the following diagram:

w0 w1

−p +p

−¬q

−q

−r

Let us check that the interpretation works:

p ∧ q is not true at both w0 and w1, making the premise (p ∧ q) → r true
at w0. p is true, and ¬q and r are both not true at w1, so the conclusion
p → (¬q ∨ r) is not true at w0.

(c) ⊢ p → (q ∨ ¬q)

p → (q ∨ ¬q),−0
p, +1

q ∨ ¬q,−1
q,−1
¬q,−1

Counter-model such that:

W = {w0, w1}; pρw1
1
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This can be represented in the following diagram:

w0 w1

+p

−¬q

−q

Let us check that the interpretation works:

p is true at w1 and both q and ¬q are not true at w1, making the conclusion
p → (q ∨ ¬q) false at w0.

(d) ⊢ (p ∧ ¬p) → q

(p ∧ ¬p) → q,−0
p ∧ ¬p, +1

q,−1
p, +1
¬p, +1

Counter-model such that:

W = {w0, w1}; pρw1
1, pρw1

0

This can be represented in the following diagram:

w0 w1

+p

+¬p

−q

Let us check that the interpretation works:

p is true and false at w1, making p ∧ ¬p true at w1. q is not true at w1

making the conclusion (p ∧ ¬p) → q not true at w0.
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(e) ⊢ (p → q) → (¬q → ¬p)

(p → q) → (¬q → ¬p),−0
p → q, +1

¬q → ¬p,−1
¬q, +2
¬p,−2

p,−2

p,−1

p,−0 q, +0

q, +1

p,−0 q, +0

q, +2

p,−1

p,−0 q, +0

q, +1

p,−0 q, +0

Counter-model from open left-most branch such that:

W = {w0, w1, w2}; qρw2
0

This can be represented in the following diagram:

w0 w1 w2

−p −p −p

−¬p

+¬q

Let us check that the interpretation works:

q is false, and p is neither true nor false, at w2, meaning that the consequent,
¬q → ¬p, is false at w1. p is not true at any world, so the antecedent p → q is
true at w1. Therefore the conclusion (p → q) → (¬q → ¬p) is not true at w0.

4. Determine which of the inferences in problem 2 are valid in N4. Where
invalid, specify a counter-model for an instance.

(a) ⊢N4
A → A

A → A,−0
A, +1
A,−1
⊗
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(b) ⊢N4
A ↔ ¬¬A

⊢N4
(A → ¬¬A) ∧ (¬¬A → A)

(A → ¬¬A) ∧ (¬¬A → A),−0

A → ¬¬A,−0
A, +1

¬¬A,−1
A,−1
⊗

¬¬A → A,−0
¬¬A, +1
A,−1
A, +1
⊗

(c) ⊢N4
(A ∧ B) → A

(A ∧ B) → A,−0
A ∧ B, +1

A,−1
A, +1
B, +1
⊗

(d) ⊢N4
A → (A ∨ B)

A → (A ∨ B),−0
A, +1

A ∨ B,−1
A,−1
B,−1
⊗
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(e) ⊢N4
(A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C))

⊢N4
((A∧(B∨C)) → ((A∧B)∨(A∧C)))∧(((A∧B)∨(A∧C)) → (A∧(B∨C)))

((A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))) ∧ (((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C))),−0

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)),−0
A ∧ (B ∨ C), +1

(A ∧ B) ∨ (A ∧ C),−1
A, +1

B ∨ C, +1
A ∧ B,−1
A ∧ C,−1

B, +1

A,−1
⊗

B,−1
⊗

C, +1

A,−1
⊗

B,−1

A,−1
⊗

C,−1
⊗

((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C)), 0
(A ∧ B) ∨ (A ∧ C), +1

A ∧ (B ∨ C),−1

A ∧ B, +1
A, +1
B, +1

A,−1
⊗

B ∨ C,−1
B,−1
C,−1
⊗

A ∧ C, +1
A, +1
C, +1

A,−1
⊗

B ∨ C,−1
B,−1
C,−1
⊗

(f) A → B, A → C ⊢N4
A → (B ∧ C)

A → B, +0
A → C, +0

A → (B ∧ C),−0
A, +1

B ∧ C,−1

B,−1

A,−1
⊗

B, +1
⊗

C,−1

A,−1
⊗

B, +1

A,−1
⊗

C, +1
⊗

14



(g) A → C, B → C ⊢N4
(A ∨ B) → C

A → C, +0
B → C, +0

(A ∨ B) → C,−0
A ∨ B, +1

C,−1

A, +1

A,−1
⊗

C, +1
⊗

B, +1

A,−1

B,−1
⊗

C, +1
⊗

C, +1
⊗

(h) A → C ⊢N4
(A ∧ B) → C

A → C, +0
(A ∧ B) → C,−0

A ∧ B, +1
C,−1
A, +1
B, +1

A,−1
⊗

C, +1
⊗

(i) 0N4
((p → q) ∧ (p → r)) → (p → (q ∧ r))

((p → q) ∧ (p → r)) → (p → (q ∧ r)),−0
(p → q) ∧ (p → r), +1

p → (q ∧ r),−1
p → q, +1
p → r, +1

Counter-model such that:

W = {w0, w1}; N = {w0}; p → qρw1
1, p → rρw1

1

This can be represented in the following diagram:

w0 w1

+p → q

+p → r

−p → (q ∧ r)
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Let us check that the interpretation works:

p → q and p → r are true at non-normal w1, making the antecedent
(p → q) ∧ (p → r) true at w1. The consequent p → (q ∧ r) is not true at
w1, meaning that the conclusion ((p → q)∧ (p → r)) → (p → (q∧r)) is not true
at w0.

(j) 0N4
((p → r) ∧ (q → r)) → ((p ∨ q) → r)

((p → r) ∧ (q → r)) → ((p ∨ q) → r),−0
(p → r) ∧ (q → r), +1

(p ∨ q) → r,−1
p → r, +1
q → r, +1

Counter-model such that:

W = {w0, w1}; N = {w0}; p → rρw1
1, q → rρw1

1

This can be represented in the following diagram:

w0 w1

+p → r

+q → r

−(p ∨ q) → r

Let us check that the interpretation works:

p → r and q → r are true at non-normal w1, making the antecedent
(p → r) ∧ (q → r) true at w1. The consequent (p ∨ q) → r is not true at
w1, meaning that the conclusion ((p → r)∧ (q → r)) → ((p∨ q) → r) is not true
at w0.
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(k) p → q 0N4
(q → r) → (p → r)

p → q, +0
(q → r) → (p → r),−0

q → r, +1
p → r,−1

p,−0

p,−1 q, +1

q, +0

p,−1 q, +1

Counter-model from the open left-hand branch such that:

W = {w0, w1}; N = {w0}; q → rρw1
1

This can be represented in the following diagram:

w0 w1

−p −q → r

+p → r

−p

Let us check that the interpretation works:

p is not true at all worlds, so the premise p → q is true at w0. q → r is
true and p → r is not true at non-normal w1, making the conclusion (q → r) →
(p → r) untrue at w0.

(l) p → q 0N4
(r → p) → (r → q)

p → q, +0
(r → p) → (r → q),−0

r → p, +1
r → q,−1

p,−0

p,−1 q, +1

q, +0

p,−1 q, +1

Counter-model from the open left-hand branch such that:

W = {w0, w1}; N = {w0}; r → pρw1
1
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This can be represented in the following diagram:

w0 w1

−p −r → q

+r → p

−p

Let us check that the interpretation works:

p is not true at all worlds, so the premise p → q is true at w0. r → p is
true and r → q is not true at non-normal w1, making the conclusion (r → p) →
(r → q) untrue at w0.

(m) A → B, B → C ⊢N4
A → C

A → B, +0
B → C, +0
A → C,−0

A, +1
C,−1

A,−1
⊗

B, +1

B,−1
⊗

C, +1
⊗

5. Repeat problems 2-4 with K∗ and N∗

Show the following in K∗ (where A ↔ B is (A → B) ∧ (B → A):

(a) ⊢K∗
A → A

A → A,−0
A, +1
A,−1
⊗
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(b) ⊢K∗
A ↔ ¬¬A

⊢ (A → ¬¬A) ∧ (¬¬A → A)

(A → ¬¬A) ∧ (¬¬A → A),−0

A → ¬¬A,−0
A, +1

¬¬A,−1
¬A, +1#

A,−1
⊗

¬¬A → A,−0
¬¬A, +1
A,−1

¬A,−1#

A, +1
⊗

(c) ⊢K∗
(A ∧ B) → A

(A ∧ B) → A,−0
A ∧ B, +1

A,−1
A, +1
B, +1
⊗

(d) ⊢K∗
A → (A ∨ B)

A → (A ∨ B),−0
A, +1

A ∨ B,−1
A,−1
B,−1
⊗
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(e) ⊢K∗
(A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C))

⊢ ((A∧(B∨C)) → ((A∧B)∨(A∧C)))∧(((A∧B)∨(A∧C)) → (A∧(B∨C)))

((A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))) ∧ (((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C))),−0

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)),−0
A ∧ (B ∨ C), +1

(A ∧ B) ∨ (A ∧ C),−1
A, +1

B ∨ C, +1
A ∧ B,−1
A ∧ C,−1

B, +1

A,−1
⊗

B,−1
⊗

C, +1

A,−1
⊗

B,−1

A,−1
⊗

C,−1
⊗

((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C)), 0
(A ∧ B) ∨ (A ∧ C), +1

A ∧ (B ∨ C),−1

A ∧ B, +1
A, +1
B, +1

A,−1
⊗

B ∨ C,−1
B,−1
C,−1
⊗

A ∧ C, +1
A, +1
C, +1

A,−1
⊗

B ∨ C,−1
B,−1
C,−1
⊗

(f) A → B, A → C ⊢K∗
A → (B ∧ C)

A → B, +0
A → C, +0

A → (B ∧ C),−0
A, +1

B ∧ C,−1

B,−1

A,−1
⊗

B, +1
⊗

C,−1

A,−1
⊗

B, +1

A,−1
⊗

C, +1
⊗

20



(g) A → C, B → C ⊢K∗
(A ∨ B) → C

A → C, +0
B → C, +0

(A ∨ B) → C,−0
A ∨ B, +1

C,−1

A, +1

A,−1
⊗

C, +1
⊗

B, +1

A,−1

B,−1
⊗

C, +1
⊗

C, +1
⊗

(h) A → C ⊢K∗
(A ∧ B) → C

A → C, +0
(A ∧ B) → C,−0

A ∧ B, +1
C,−1
A, +1
B, +1

A,−1
⊗

C, +1
⊗

(i) ⊢K∗
((A → B) ∧ (A → C)) → (A → (B ∧ C))

((A → B) ∧ (A → C)) → (A → (B ∧ C)),−0
(A → B) ∧ (A → C), +1

A → (B ∧ C),−1
A → B, +1
A → C, +1

A, +2
B ∧ C,−2

B,−2

A,−2
⊗

B, +2
⊗

C,−2

A,−2
⊗

B, +2

A,−2
⊗

C, +2
⊗
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(j) ⊢K∗
((A → C) ∧ (B → C)) → ((A ∨ B) → C)

((A → C) ∧ (B → C)) → ((A ∨ B) → C),−0
(A → C) ∧ (B → C), +1

(A ∨ B) → C,−1
A → C, +1
B → C, +1
A ∨ B, +2

C,−2

A, +2

A,−2
⊗

C, +2
⊗

B, +2

A,−2

B,−2
⊗

C, +2
⊗

C, +2
⊗

(k) A → B ⊢K∗
(B → C) → (A → C)

A → B, +0
(B → C) → (A → C),−0

B → C, +1
A → C,−1

A, +2
C,−2

A,−2
⊗

B, +2

B,−2
⊗

C, +2
⊗

(l) A → B ⊢K∗
(C → A) → (C → B)

A → B, +0
(C → A) → (C → B),−0

C → A, +1
C → B,−1

C, +2
B,−2

A,−2

C,−2
⊗

A, +2
⊗

B, +2
⊗
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(m) A → B, B → C ⊢K∗
A → C

A → B, +0
B → C, +0
A → C,−0

A, +1
C,−1

A,−1
⊗

B, +1

B,−1
⊗

C, +1
⊗

Show that the following are not true in K∗ and specify a counter-model.

(a) 0K∗
(p ∧ (¬p ∨ q)) → q

(p ∧ (¬p ∨ q)) → q,−0
p ∧ (¬p ∨ q), +1

q,−1
p, +1

¬p ∨ q, +1

¬p, +1
p,−1#

q, +1
⊗

Counter-model such that:

W = {w0, w1, w
∗

0 , w∗

1}; vw1
(p) = 1, vw1

(q) = 0, vw∗

1
(p) = 0

Let us check that the interpretation works:

vw1
(p) = 1, and vw∗

1
(p) = 0, making vw1

(p ∧ (¬p ∨ q)) = 1. vw1
(q) = 0.

Therefore the truth-value of the conclusion is vw0
((p ∧ (¬p ∨ q)) → q) = 0
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(b) (p ∧ q) → r 0K∗
p → (¬q ∨ r)

(p ∧ q) → r, +0
p → (¬q ∨ r),−0

p, +1
¬q ∨ r,−1
¬q,−1
r,−1

q, +1#

p ∧ q,−1

p,−1
⊗

q,−1

p ∧ q,−1#

p,−1#

p ∧ q,−0

p,−0

p ∧ q,−0#

p,−0# q,−0#

r,−0#

q,−0

p ∧ q,−0#

p,−0# q,−0#

r,−0#

r,−0

p ∧ q,−0#

p,−0# q,−0#

r,−0#

q,−1#

⊗

r,−1#

p ∧ q,−0

p,−0

p ∧ q,−0#

p,−0# q,−0#

r,−0#

q,−0

p ∧ q,−0#

p,−0# q,−0#

r,−0#

r,−0

p ∧ q,−0#

p,−0# q,−0#

r,−0#

r, +1
⊗

Counter-model from the open left-most branch such that:

W = {w0, w1, w
∗

0 , w∗

1}; vw0
(p) = 0, vw∗

0
(p) = 0, vw1

(p) = 1, vw1
(q) = 0, vw∗

1
(p) = 0, vw∗

1
(q) = 1, vw1

(r) = 0

Let us check that the interpretation works:

vw0
(p) = 0, vw∗

0
(p) = 0, vw∗

1
(p) = 0, and vw1

(q) = 0, so p ∧ q is false at
every world. This means vw0

((p ∧ q) → r) = 1. However, vw1
(p) = 1, while

vw1
(r) = 0, and vw∗

1
(q) = 1, so vw0

(p → (¬q ∨ r)) = 0.
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(c) 0K∗
p → (q ∨ ¬q)

p → (q ∨ ¬q),−0
p, +1

q ∨ ¬q,−1
q,−1
¬q,−1
q, +1#

Counter-model such that:

W = {w0, w1, w
∗

0 , w∗

1}; vw1
(p) = 1, vw1

(q) = 0, vw∗

1
(q) = 1

Let us check that the interpretation works:

p is true at w1 and both q and ¬q are not true at w1, making the conclusion
p → (q ∨ ¬q) untrue at w0.

(d) 0K∗
(p ∧ ¬p) → q

(p ∧ ¬p) → q,−0
p ∧ ¬p, +1

q,−1
p, +1
¬p, +1
p,−1#

Counter-model such that:

W = {w0, w1, w
∗

0 , w∗

1}; vw1
(p) = 1, vw1

(q) = 0, vw∗

1
(p) = 0

Let us check that the interpretation works:

p, and ¬p are both true at w1, making p ∧ ¬p true at w1. q is false at w1

making the conclusion (p ∧ ¬p) → q false at w0.
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(e) ⊢K∗
(A → B) → (¬A → ¬B)

(The question asks us to show that this inference is invalid, however it is in
fact valid.)

(A → B) → (¬B → ¬A),−0
A → B, +1

¬B → ¬A,−1
¬B, +2
¬A,−2
B,−2#

A, +2#

A,−2#

⊗
B, +2#

⊗

Determine which of the inferences in problem 2 are valid in N∗. Where in-
valid, specify a counter-model for an instance.

(a) ⊢N∗
A → A

A → A,−0
A, +1
A,−1
⊗

(b) ⊢N∗
A ↔ ¬¬A

⊢N∗
(A → ¬¬A) ∧ (¬¬A → A)

(A → ¬¬A) ∧ (¬¬A → A),−0

A → ¬¬A,−0
A, +1

¬¬A,−1
¬A, +1#

A,−1
⊗

¬¬A → A,−0
¬¬A, +1
A,−1

¬A,−1#

A, +1
⊗

(c) ⊢N∗
(A ∧ B) → A

(A ∧ B) → A,−0
A ∧ B, +1

A,−1
A, +1
B, +1
⊗
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(d) ⊢N∗
A → (A ∨ B)

A → (A ∨ B),−0
A, +1

A ∨ B,−1
A,−1
B,−1
⊗

(e) ⊢N∗
(A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C))

⊢N∗
((A∧(B∨C)) → ((A∧B)∨(A∧C)))∧(((A∧B)∨(A∧C)) → (A∧(B∨C)))

((A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))) ∧ (((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C))),−0

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)),−0
A ∧ (B ∨ C), +1

(A ∧ B) ∨ (A ∧ C),−1
A, +1

B ∨ C, +1
A ∧ B,−1
A ∧ C,−1

B, +1

A,−1
⊗

B,−1
⊗

C, +1

A,−1
⊗

B,−1

A,−1
⊗

C,−1
⊗

((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C)), 0
(A ∧ B) ∨ (A ∧ C), +1

A ∧ (B ∨ C),−1

A ∧ B, +1
A, +1
B, +1

A,−1
⊗

B ∨ C,−1
B,−1
C,−1
⊗

A ∧ C, +1
A, +1
C, +1

A,−1
⊗

B ∨ C,−1
B,−1
C,−1
⊗
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(f) A → B, A → C ⊢N∗
A → (B ∧ C)

A → B, +0
A → C, +0

A → (B ∧ C),−0
A, +1

B ∧ C,−1

B,−1

A,−1
⊗

B, +1
⊗

C,−1

A,−1
⊗

B, +1

A,−1
⊗

C, +1
⊗

(g) A → C, B → C ⊢N∗
(A ∨ B) → C

A → C, +0
B → C, +0

(A ∨ B) → C,−0
A ∨ B, +1

C,−1

A, +1

A,−1
⊗

C, +1
⊗

B, +1

A,−1

B,−1
⊗

C, +1
⊗

C, +1
⊗

(h) A → C ⊢N∗
(A ∧ B) → C

A → C, +0
(A ∧ B) → C,−0

A ∧ B, +1
C,−1
A, +1
B, +1

A,−1
⊗

C, +1
⊗

28



(i) 0N∗
((p → q) ∧ (p → r)) → (p → (q ∧ r))

((p → q) ∧ (p → r)) → (p → (q ∧ r)),−0
(p → q) ∧ (p → r), +1

p → (q ∧ r),−1
p → q, +1
p → r, +1

Counter-model such that:

W = {w0, w
∗

0 , w1, w
∗

1}; N = {w0}; v(p → q)w1
= 1, v(p → r)w1

= 1, v(p → (q∧r))w1
= 0

This can be represented in the following diagram:

w0 w1 w∗

0 w∗

1

+p → q

+p → r

−p → (q ∧ r)

Let us check that the interpretation works:

p → q and p → r are true at non-normal w1, making the antecedent
(p → q) ∧ (p → r) true at w1. The consequent p → (q ∧ r) is not true at
w1, meaning that the conclusion ((p → q)∧ (p → r)) → (p → (q∧r)) is not true
at w0.

(j) 0N∗
((p → r) ∧ (q → r)) → ((p ∨ q) → r)

((p → r) ∧ (q → r)) → ((p ∨ q) → r),−0
(p → r) ∧ (q → r), +1

(p ∨ q) → r,−1
p → r, +1
q → r, +1

Counter-model such that:

W = {w0, w
∗

0 , w1, w
∗

1}; N = {w0}; v(p → r)w1
= 1, v(q → r)w1

= 1, v((p∨q) → r)w1
= 0

This can be represented in the following diagram:

w0 w1 w∗

0 w∗

1

+p → r

+q → r

−(p ∨ q) → r
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Let us check that the interpretation works:

p → r and q → r are true at non-normal w1, making the antecedent
(p → r) ∧ (q → r) true at w1. The consequent (p ∨ q) → r is not true at
w1, meaning that the conclusion ((p → r)∧ (q → r)) → ((p∨ q) → r) is not true
at w0.

(k) p → q 0N∗
(q → r) → (p → r)

p → q, +0
(q → r) → (p → r),−0

q → r, +1
p → r,−1

p,−0

p,−1

p,−0#

p,−1# q, +1#

q, +0#

p,−1# q, +1#

q, +1

p,−0#

p,−1# q, +1#

q, +0#

p,−1# q, +1#

q, +0

p,−1

p,−0#

p,−1# q, +1#

q, +0#

p,−1# q, +1#

q, +1

p,−0#

p,−1# q, +1#

q, +0#

p,−1# q, +1#

Counter-model from the open left-hand branch such that:

W = {w0, w
∗

0 , w1, w
∗

1}; N = {w0}
v(p)w0

= 0, v(p)w1
= 0, v(p)w∗

0
= 0, v(p)w∗

1
= 0, v(q → r)w1

= 1, v(p → r)w1
= 0

This can be represented in the following diagram:

w0 w1 w∗

0 w∗

1

−p −q → r −p −p

+p → r

−p

Let us check that the interpretation works:

p is not true at all worlds, so the premise p → q is true at w0. q → r is
true and p → r is not true at non-normal w1, making the conclusion (q → r) →
(p → r) untrue at w0.
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(l) p → q 0N∗
(r → p) → (r → q)

p → q, +0
(r → p) → (r → q),−0

r → p, +1
r → q,−1

p,−0

p,−1

p,−0#

p,−1# q, +1#

q, +0#

p,−1# q, +1#

q, +1

p,−0#

p,−1# q, +1#

q, +0#

p,−1# q, +1#

q, +0

p,−1

p,−0#

p,−1# q, +1#

q, +0#

p,−1# q, +1#

q, +1

p,−0#

p,−1# q, +1#

q, +0#

p,−1# q, +1#

Counter-model from the open left-hand branch such that:

W = {w0, w1, w
∗

0 , w∗

1}; N = {w0}; v(p)w0
= 0, v(p)w1

= 0, v(p)w∗

0
= 0, v(p)w∗

1
= 0, v(r → p)w1

= 1, v(r → q)w1
=

This can be represented in the following diagram:

w0 w1 w∗

0 w∗

1

−p −r → q −p −p

+r → p

−p

Let us check that the interpretation works:

p is not true at all worlds, so the premise p → q is true at w0. r → p is
true and r → q is not true at non-normal w1, making the conclusion (r → p) →
(r → q) untrue at w0.

(m) A → B, B → C ⊢N∗
A → C

A → B, +0
B → C, +0
A → C,−0

A, +1
C,−1

A,−1
⊗

B, +1

B,−1
⊗

C, +1
⊗

31



6. In the semantics for N4 and N∗, there may be many normal worlds, but
the tableaux show us that it suffices to suppose that there is only one normal
world. Why is this?

By the completeness theorem, if an inference is invalid, the tableaux for it
does not close and the counter-model this gives has only one normal world.
Hence if an inference is invalid, it has a counter-model with only one normal
world. On the other hand, if an inference is valid, it is truth preserving at the
normal world of all interpretations with only one normal world. Hence, it makes
no difference to which inferences are made valid if we define interpretations to
have only one normal world.

9. Show by induction that in any interpretation, < W, R, ρ > for I4, I3, or
W , for any formula A:

If Aρw1 and wRw′ then Aρw′1

If Aρw0 and wRw′ then Aρw′0

For the basis case, where A is a propositional parameter, the result follows
simply from the heredity condition, which all three logics subscribe to.

We then have four induction cases: for A of the form ¬B, B ∧ C, B ∨ C,
and B = C

In the following, let us suppose that wRw′.

¬B

This case will be the same for all three logics, as they all follow the same
rules for negation.

Suppose that ¬Bρw1, so by the rule for negation Bρw0. By induction hy-
pothesis and the heredity condition, Bρw′0. Hence by the negation rule ¬Bρw′1,
as required.

Suppose that ¬Bρw0, so by the rule for negation Bρw1. By induction hy-
pothesis and the heredity condition, Bρw′1. Hence by the negation rule ¬Bρw′0,
as required.

B ∧ C

This case will be the same for all three logics, as they all follow the same
rules for conjunction.

32



Suppose that B ∧ Cρw1, so by the rule for conjunction Bρw1, and Cρw1.
By induction hypothesis and the heredity condition, Bρw′1 and Cρw′1. Hence
by the conjunction rule B ∧ Cρw′1, as required.

Suppose that B ∧ Cρw0, so by the rule for conjunction Bρw0, or Cρw0. By
induction hypothesis and the heredity condition, Bρw′0 or Cρw′0. Hence by the
conjunction rule B ∧ Cρw′0, as required.

B ∨ C

This case will be the same for all three logics, as they all follow the same
rules for disjunction.

Suppose that B ∨ Cρw1, so by the rule for disjunction Bρw1, or Cρw1. By
induction hypothesis and the heredity condition, either Bρw′1 or Cρw′1. Hence
in either case by the disjunction rule B ∨ Cρw′1, as required.

Suppose that B ∨Cρw0, so by the rule for disjunction Bρw0, and Cρw0. By
induction hypothesis and the heredity condition, both Bρw′0 and Cρw′0. Hence
by the disjunction rule B ∨ Cρw′0, as required.

B = C

Contrapositive proof: Suppose that it is not the case that B = Cρw′1. Then
for some w′′ such that w′Rw′′, Bρw′′1 and it is not the case that Cρw′′1. By
transitivity wRw′′, so it is not the case that B = Cρw′1, as required.

The following argument only holds for I3 and I4.

Suppose that B = Cρw0, so by the rule for the negated conditional, Bρw1
and Cρw0. By the heredity condition and induction hypothesis, Bρw′1 and
Cρw′0, hence B = Cρw′0, as required

There is a separate case for W :

Contrapositive proof: Suppose it is not the case that that B = Cρw′0. Then
it is not the case that B = ¬Cρw′1. So there is some w′′ such that Bρw′′1 and
it is not the case that ¬Cρw′′1. By transitivity, wRw′′, and so it is not the case
that B = ¬Cρw1. Hence it is not the case that B = Cρw0.

33



10. Determine the truth of the following in I4, I3, and the connexive logic
W . Where invalid, give a counter-model.

As a general point, it will be helpful to note that tableaux for I4 and I3 only
differ if they contain nodes of the form A, +i and A,−i, and that I4 only differs
from W on tableaux with nodes of the form ¬(A = B).

(a) ⊢ ¬(p ∧ q) = (¬p ∨ ¬q)

I4, I3, W

¬(p ∧ q) = (¬p ∨ ¬q),−0
0r0, 0r1, 1r1
¬(p ∧ q), +1
¬p ∨ ¬q,−1

¬p,−1
¬q,−1

¬p ∨ ¬q, +1

¬p, +1
⊗

¬q, +1
⊗

(b) ⊢ ¬(p ∨ q) = (¬p ∧ ¬q)

I4, I3, W

¬(p ∨ q) = (¬p ∧ ¬q),−0
0r0, 0r1, 1r1
¬(p ∨ q), +1
¬p ∧ ¬q,−1
¬p ∧ ¬q, +1

⊗
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(c) 0 (p = q) = (¬q = ¬p)

I4, W

(p = q) = (¬q = ¬p),−0
0r0, 0r1, 1r1

p = q, +1
¬q = ¬p,−1
1r2, 0r2, 2r2

¬q, +2
¬p,−2

p,−2

p,−1 q, +1

q, +2

p,−1 q, +1

Counter-model from open left-most branch such that:

y

w0 −→
y

w1

−p

−→
y

w2

−p

−¬p

+¬q

I3

(p = q) = (¬q = ¬p),−0
0r0, 0r1, 1r1

p = q, +1
¬q = ¬p,−1
1r2, 0r2, 2r2

¬q, +2
¬p,−2

p,−2

p,−1 q, +1

q, +2
⊗

Counter-model from open left-most branch such that:

y

w0 −→
y

w1

−p

−→
y

w2

−p

−¬p

+¬q
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(d) 0 p ∨ ¬p

I4, I3, W

p ∨ ¬p,−0
0r0

p,−0
¬p,−0

Counter-model such that:

y

w0

−p

−¬p

(e) 0 (¬p = p) = p

I4, I3, W

(¬p = p) = p,−0
0r0, 0r1, 1r1
¬p = p, +1

p,−1

¬p,−1 p, +1
⊗

Counter-model such that:

y

w0 −→
y

w1

−p

−¬p
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(f) ⊢ ¬(p = q) = (p = ¬q)

I4, I3

¬(p = q) = (p = ¬q),−0
0r0, 0r1, 1r1
¬(p = q), +1
p = ¬q,−1

1r2, 2r2, 0r2
p, +2
¬q,−2
p, +1
¬q, +1
¬q, +2

⊗

W

¬(p = q) = (p = ¬q),−0
0r0, 0r1, 1r1
¬(p = q), +1
p = ¬q,−1
p = ¬q, +1

⊗

(g) 0 (p = q) ∨ (p = ¬q)

I4, I3, W

(p = q) ∨ (p = ¬q),−0
0r0

p = q,−0
p = ¬q,−0
0r1, 1r1
p, +1
q,−1

0r2, 2r2
p, +2
¬q,−2
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Counter-model such that:

y

w0

y

w1

+p

−q

y

w2

+p

−¬q

(h) ⊢ ¬((p ∧ ¬p) = (p ∨ ¬p))

I4, I3

¬((p ∧ ¬p) = (p ∨ ¬p)),−0
0r0

p ∧ ¬p,−0

p,−0 ¬p,−0

¬(p ∨ ¬p),−0
¬p ∧ ¬¬p,−0

¬p,−0 ¬¬p,−0
p,−0

Counter-model from open left-most branch such that:

y

w0

−p

W

¬((p ∧ ¬p) = (p ∨ ¬p)),−0
0r0

(p ∧ ¬p) = ¬(p ∨ ¬p),−0
0r1, 1r1

p ∧ ¬p, +1
¬(p ∨ ¬p),−1

p, +1
¬p, +1

¬p ∧ ¬¬p,−1

¬p,−1
⊗

¬¬p,−1
p,−1
⊗
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11. Work out the details omitted in 9.7a.8, 9.7a.11, and 9.7a.14.

9.7a.8 Show that for every formula, A, vw(p) = 1 iff pρw1.

Basis case is for propositional parameters, and is true by definition.

B ∧ C

vw(B ∧ C) = 1 iff vw(B) = 1 and vw(C) = 1
iff Bρw1 and Cρw1
iff B ∧ Cρw1

B ∨ C

vw(B ∧ C) = 1 iff vw(B) = 1 or vw(C) = 1
iff Bρw1 or Cρw1
iff B ∨ Cρw1

B = C

vw(B = C) = 1 iff for all w′ such that wRw′, either vw′(B) = 0 or vw(C) = 1
iff for all w′ such that wRw′, either it is not the case that

vw′(B) = 1 or vw(C) = 1 (since v semantics are two valued)
iff for all w′ such that wRw′, either it is not the case that Bρw′0 or Cρw′1
iff B = Cρw1

9.7a.11 Check that Aristotle and Boethius are valid in W .

⊢ ¬(A = ¬A)

¬(A = ¬A),−0
0r0

A = ¬¬A,−0
0r1, 1r1
A, +1

¬¬A,−1
A,−1
⊗
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⊢ (A = B) = ¬(A = ¬B)

(A = B) = ¬(A = ¬B),−0
0r0, 0r1, 1r1
A = B, +1

¬(A = ¬B),−1
A = ¬¬B,−1
1r2, 2r2, 0r2

A, +2
¬¬B,−2
B,−2

A,−2
⊗

B, +2
⊗

9.7a.14 Show that the class of logical truths in W is inconsistent by showing
that (p ∧ ¬p) = ¬(p ∧ ¬p) is valid.

⊢W (p ∧ ¬p) = ¬(p ∧ ¬p)

(p ∧ ¬p) = ¬(p ∧ ¬p),−0
0r0, 0r1, 1r1
p ∧ ¬p, +1

¬(p ∧ ¬p),−1
¬p ∨ ¬¬p,−1

p, +1
¬p, +1
¬p,−1
¬¬p,−1

p,−1
⊗

12. Show that in I3 and I4:

(a) if � A ∨ B then � A or � B. (Hint: see 6.10, problem 5.)

(b) if � ¬(A ∧ B) then � ¬A or � ¬B.

(a) Show that if � A ∨ B then � A or � B.

Contrapositive proof. Suppose that 2 A and 2 B. Then there is an interpre-
tation, IA, and a world, wA, in the interpretation, where A is not true. Similarly
for IB and wB . We can assume that the worlds of the two interpretations are
distinct.
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Now let us construct the interpretation, I, whose worlds are those of IA and
IB, which relate to each other exactly as they do in those interpretations, and
where the truth values at each world are the same as those in those interpreta-
tions. In addition, there is one new world, w, such that w relates to itself, wA,
wB, and all the worlds that wA and wB relate to. Further all propositional pa-
rameters relate to neither 0 nor 1 at w. (Thus for any propositional parameter
p, if relates to 0 or 1 in w, it relates to 0 or 1 in wA and wB, and heredity is
vacuously satisfied.)

This is an interpretation for both I3 and I4. Every formula has the same
truth value at wA in I and IA, since we have not done anything to change these.
Similarly, every formula has the same truth value at wB in I and IB . Now
suppose that � A ∨ B. Then A ∨ B is true at w, so either A or B is true at
w. If it is A, then by heredity, A is true at wA, which it is not; similarly for B.
Hence, 2 A ∨ B.

(b) Show that if � ¬(A ∧ B) then � ¬A or � ¬B.

Suppose that � ¬(A∧B). Then � ¬A∨¬B. So, by part (a), � ¬A or � ¬B.

13. Find an inference that is valid in I4, but not in intuitionist logic. Find
an inference that is valid in intuitionist logic, but not in I4. (Hint, see 9.6.9.)

�I4 ¬¬A = A

(Shown in 9.7a.5)

2I⇁⇁ p = p

(Shown in 6.4.11)

⊢I (p∧ ⇁ p) = q

(p∧ ⇁ p) = q,−0
0r0, 0r1, 1r1
p∧ ⇁ p, +1

q,−1
p, +1

⇁ p, +1
p,−1
⊗

0I4 (p ∧ ¬p) = q

(Shown in 9.7a.5)
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15.∗ Fill in the details omitted in 9.8.

9.8.3: Cases for ¬(A → B), +i and ¬(A → B),−i in the Soundness Lemma
for K4.

Suppose that we apply the rule to ¬(A → B), +i. Then by assumption,
¬(A → B) is true, and A → B false at f(i). Hence there is some w such that
A is true at w and B is false. Let f ′ be the same as f , except that f ′(j) = w.
Then f ′ shows I to be faithful to the extended branch.

Suppose that we apply the rule to ¬(A → B),−i. Then by assumption,
¬(A → B) is not true, and A → B not false at f(i). Hence for any j on the
branch, either A is not true or B is not false atf(j). In the first case f shows I

to be faithful to the left-hand branch, in the second it shows I to be faithful to
the right-hand branch.

9.8.6: Cases for negated → in the Completeness Lemma for K4.

Suppose that ¬(B → C), +i is on b. Then there is a j such that B, +j and
¬C, +j are on b. By induction hypothesis, B is true at wj and C is false at wj .
Thus B → C is false, and ¬(B → C) true at wi, as required.

Suppose that ¬(B → C),−i is on b. Then for all j, either B,−j, or ¬C,−j

is on b. By induction hypothesis, either B is not true at wj , or ¬C is not true
(and hence C is not false) at wj . In either case, B → C is not false at wi, so
¬(B → C) is not true at wi, as required.
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9.8.13: Soundness and Completeness for N∗

The proof modifies the proof for K∗

Soundness Theorem: The tableau system for N∗ is sound with respect to its
semantics.

Proof:

The proof is exactly the same as for K∗, except that in the definition of faith-
fulness, we add the clause: f(0)ǫN . In the Soundness Lemma, the rules for →
are applied only to 0, and f(0) is normal.

Completeness Theorem: The tableau system for N∗ is complete with respect
to its semantics.

Proof:

This proof modifies that for K∗ as follows. W = {wx : x or x occurs on b},
N = {w0}, w∗

i = wi# and w∗

i#
= wi; If irj is on b then f(i)Rf(j). Further, for

every parameter, p:

vwi
(p) = 1 if p, +i occurs on b

vwi
(p) = 0 if p,−i occurs on b

And for every formula A → B and i > 0:

vwi
(A → B) = 1 if A → B, +i occurs on b

vwi
(A → B) = 0 if A → B,−i occurs on b

The rest of the proof is then as for K∗. Only the induction cases for → in
the Completeness Lemma are different. In these, if wi is normal, the arguments
are exactly the same. If wi is non-normal, the result holds simply by definition.

9.8.16: Case for − in the Soundness and Completeness Lemmas for W .

Soundness:

Suppose that we apply the rule to ¬(A = B), +i. By assumption, A = B is
false at f(i). So A = ¬B is true at f(i), as required.

Suppose that we apply the rule to ¬(A = B),−i. By assumption, A = B is
not true at f(i). So A = ¬B is not true at f(i), as required.
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Completeness:

Suppose that ¬(A = B), +i is on the branch. Then so is A = ¬B, +i, and
for every j such that irj is on the branch, either A,−j or ¬B, +j is on the
branch. By construction and induction hypothesis, for all wj such that wiRwj ,
either A is not true at wj or B is false there. Hence, A = B is false at wi.

Suppose that ¬(A = B),−i is on the branch. Then A = ¬B,−i is on the
branch. Hence, for all j such that irj are on the branch, either A,−j or ¬B,−j

are not on the branch. By induction hypothesis, for all wj such that wiRwj ,
either A is not true at wj , or B is not false there. Hence A = B is not false at wi.

16.∗ Design tableaux for the systems of 9.7.14, and prove them sound and
complete.

There are three restrictions discussed in 9.7.14: Logics with no gluts, no
gaps, and neither gluts nor gaps. I will deal with them in turn.

1. No gluts

A simple way to rule out gluts, is to make ρ@ satisfy the exclusion condi-
tion. In other words, set up the logic such that it is not the case that for any
propositional parameter p, pρ@1 and pρ@0.

Further, to rule out truth value gluts while accommodating formulas con-
taining →, we need to modify its falsity conditions as follows:

A → Bρ@0 iff (for some w′, Aρw′1 and Bρw′0) and (it is not the case that
A → Bρ@1

Now we need new tableaux rules to reflect the semantic definitions. For
simplicity this logic will be based on K4. In K4 all worlds are related to one
another, so there will be no mention of the accessibility relation.

For the exclusion restriction:

Closure rule: Branches close if they contain lines of the form A, +0 and ¬A, +0.
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And for the new falsity conditions for →:

Tableaux rule:

¬(A → B), +0
↓

A → B,−0
A, +i

¬B, +i

Tableaux rule:

¬(A → B),−0
ւ ↓ ց

A → B, +0 A,−i ¬B,−i

The first rule is applied for an i new to the branch; the second rule is applied
for all i on the branch.

We must now show the new rules to be sound and complete. The Soundness
and Completeness proofs for this logic modify those for K4 (9.8.2 - 9.8.7).

Soundness:

We must first modify the definition of faithfulness, and the statement of the
Soundness Lemma, and then produce new arguments for the new rules in the
Soundness Lemma.

• Definition:

Let I = < W, ρ, @ > be any relational interpretation and b be any branch of
a tableau. Then I is faithful to b iff there is a map, f , from the natural numbers
to W such that:

for every node A, +i on b, Aρf(i)1 in I.

for every node A,−i on b, it is not the case that Aρf(i)1 in I.

Further, f(0) = @.

• Soundness Lemma:

Let b be any branch of a tableau, and I = < W, ρ, @ > be any interpretation
for this logic. If I is faithful to b, and a tableau rule is applied to it, then it
produces at least one extension, b′, such that I is faithful to b′.
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• Modifications to the proof:

Let f be a function which shows I to be faithful to b.

Suppose that we apply the rule to ¬(A → B), +0. Then by assumption,
A → B is false at f(0), that is, @. By the falsity conditions for → at @, (for
some w, A is true at w, and B is false at w) and (it is not the case that A → B

is true at @). Let f ′ be the same as f , except f ′(i) = w. Then f ′ shows I to
be faithful to the extended branch.

Suppose that we apply the rule to ¬(A → B),−0. Then by assumption,
A → B is not false at f(0), that is, @. By the falsity conditions for → at @,
either (for every w, A is not true at w or B is not false at w) or (A → B is true
at @). Whichever is the case, f shows I to be faithful to one of the extended
branches.

Completeness:

We must now modify the definition of the induced interpretation, and the
statement of the Completeness Lemma, and then check that the induced inter-
pretation is how we want it to be for the new cases:

• Definition:

Let b be an open branch of a tableau. The interpretation I = < W, ρ, @ >,
induced by b is defined as in 9.8.5. W = {wi : i < 0 occurs on b}. w0 = @. For
every parameter, p:

pρwi
1 iff p, +i occurs on b

pρwi
0 iff ¬p, +i occurs on b

The new closure rule ensures that the interpretation meets the exclusion
restraint.

• Completeness Lemma:

Let b be any open completed branch of a tableau. Let I = < W, ρ, @ > be
the interpretation induced by b. Then:

if A, +i is on b, then A is true at wi

if A,−i is on b, then it is not the case that A is true at wi.
if ¬A, +i is on b, then A is false at wi

if ¬A,−i is on b, then it is not the case that A is false at wi
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• Modifications to the proof:

Suppose that ¬(A → B), +0 is on b, then the following are on b: A → B,−0,
A, +i, and ¬B, +i, for some i. By construction and induction hypothesis,
A → B is not true at @, and for some wi, A is true at wi, and B is false
at wi. Hence A → B is false at @, i.e., ¬(A → B) is true.

Suppose that ¬(A → B),−0 is on b, then either A → B, +0 is on b, or
for every i on b, either A,−i is on b, or ¬B,−i is on b. By construction and
induction hypothesis, either A → B is true at @, or for every wi, either A is not
true at wi, or B is not false there. Hence A → B is not false at @.

�

2. No gaps

A simple way to rule out gaps, is to make ρ@ satisfy the exhaustion condi-
tion. In other words, set up the logic such that for all p either pρ1 or pρ0.

Further, to rule out truth value gaps while accommodating formulas con-
taining →, we need to modify its falsity conditions as follows:

A → Bρ@0 iff (for some w′, Aρw′1 and Bρw′0) or (it is not the case that
A → Bρ@1

Now we need new tableaux rules to reflect the semantic definitions. For
simplicity this logic will also be based on K4, so as all worlds are related to one
another, there will be no mention of the accessibility relation.

For the exhaustion condition:

Closure rule: Branches close if they contain lines of the form A,−0 and ¬A,−0.
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And for the new falsity conditions for →:

Tableaux rule:

¬(A → B), +0
ւ ց

A, +i A → B,−0
¬B, +i

Tableaux rule:

¬(A → B),−0
A → B, +0

ւ ց
A,−i ¬B,−i

The first rule is applied for an i new to the branch; the second rule is applied
for all i on the branch.

We must now show the new rules to be sound and complete. The Soundness
and Completeness proofs for this logic modify those for LP (8.7.9).

Soundness:

We must first modify the definition of faithfulness, and the statement of the
Soundness Lemma, and then produce new arguments for the new rules in the
Soundness Lemma.

• Definition:

Let I = < W, ρ, @ > be any relational interpretation and b be any branch of
a tableau. Then I is faithful to b iff there is a map, f , from the natural numbers
to W such that:

for every node A, +i on b, Aρf(i)1 in I.

for every node A,−i on b, it is not the case that Aρf(i)1 in I.

Further, f(0) = @

• Soundness Lemma:

Let b be any branch of a tableau, and I = < W, ρ, @ > be any interpretation
for this logic. If I is faithful to b, and a tableau rule is applied to it, then it
produces at least one extension, b′, such that I is faithful to b′.
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• Modifications to the proof:

Let f be a function which shows I to be faithful to b.

Suppose that we apply the rule to ¬(A → B), +0. Then, by assumption,
A → B is false at f(0), that is, @. By the falsity conditions for → at @, (for
some w, A is true at w and B is false at w), or (it is not the case that A → B

is true at @). Let f ′ be the same as f , except that f ′(i) = w. Then f ′ shows I

to be faithful to one of the extended branches.

Suppose that we apply the rule to ¬(A → B),−0. Then, by assumption,
A → B is not false at f(0), that is, @. By the falsity conditions for → at @, (for
every w, either A is not true at w, or B is not false at w) and (A → B is true
at @). Whichever is the case, f shows I to be faithful to one of the extended
branches.

Completeness:

We must now modify the definition of the induced interpretation, and the
statement of the Completeness Lemma, and then check that the induced inter-
pretation is how we want it to be for the new cases:

• Definition:

Let b be an open branch of a tableau. The interpretation I = < W, ρ, @ >

induced by b is defined as in 8.7.9. W = {wi : i < 0 occurs on b}. w0 = @. For
every parameter, p:

pρwi
1 iff p,−i is not on b

pρwi
0 iff ¬p,−i is not on b

The new closure rule implies that one or the other of these must hold, so the
exhaustion condition holds for this interpretations of this logic.

• Completeness Lemma:

Let b be any open completed branch of a tableau. Let I = < W, ρ, @ > be
the interpretation induced by b. Then:

if A, +i is on b, then A is true at wi

if A,−i is on b, then it is not the case that A is true at wi.
if ¬A, +i is on b, then A is false at wi

if ¬A,−i is on b, then it is not the case that A is false at wi
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• Modifications to the proof:

Suppose that ¬(A → B), +0 is on b, then either A → B,−0 is on b or, for
some i, A, +i and ¬B, +i are on b. By construction and induction hypothesis,
either A → B is not true at @, or for some wi, A is true at wi and B is false
there. Hence A → B is false at @.

Suppose that ¬(A → B),−0 is on b, then A → B, +0 is on b, and for every
i on b, either A,−i is on b or ¬B,−i is on b. By construction and induction
hypothesis, A → B is true at @, and for all wi, either A is not true at wi, or B

is not false there. Hence A → B is not false at @.

�

3. No gluts or gaps

A simple way to rule out gluts and gaps in @, is to take a star logic and
specify that @ = @∗.

We then need tableaux rules to reflect this semantic constraint:

Tableaux rule:

A, +0
↓

A, +0#

Tableaux rule:

A, +0#

↓
A, +0

No new closure rules are necessary.

We must now show the new rules to be sound and complete. The Soundness
and Completeness proofs for this logic modify those for K∗ (9.8.11 - 8.8.12)

Soundness:

We must first modify the definition of faithfulness, and the statement of the
Soundness Lemma, and then produce new arguments for the new rules in the
Soundness Lemma.
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• Definition:

Let I =< W, ∗, v, @ > be any Routley interpretation, and b be any branch of
a tableau. Then I is faithful to b iff there is a map, f , from the natural numbers
to W , such that:

f(0) = @

for every node A, +x on b, A is true at f(x) in I

for every node A,−x on b, A is false at f(x) in I

where f(i#) is, by definition f(i)∗.

• Soundness Lemma:

Let b be any branch of a tableau, and I =< W, ∗, v, @ > be any Routley in-
terpretation. If I is faithful to b, and a tableau rule is applied, then it produces
at least one extension, b′, such that I is faithful to b′.

• Modifications to the proof:

Let f be a function which shows I to be faithful to b.

Suppose that we apply the rule to A, +0. By induction hypothesis, vf(0)(A) =
1. So v@(A) = 1, and since @ = @∗, v@∗(A) = 1. That is, vf(0)∗(A) = 1 and
vf(0#)(A) = 1, as required.

Suppose that we apply the rule to A, +0#. By induction hypothesis, vf(0#)(A) =
1. So vf(0)∗(A) = 1, and v@∗(A) = 1. Since @ = @∗, v@(A) = 1, and
vf(0)(A) = 1, as required.

Completeness:

We must now modify the definition of the induced interpretation, and the
statement of the Completeness Lemma, and then check that the induced inter-
pretation is how we want it to be for the new cases:

• Definition:

Let b be an open branch of a tableau. The interpretation, I =< W, ∗, v, @ >

induced by b is defined as in 9.8.12, except in the case where x = 0: W =
{w0} ∪ {wx : x > 0 and either x or x̄ occurs on b}. Additionally w0 = @ and
@ = @∗.
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v is such that:

vwx
(p) = 1 if p, +x is on b

vwx
(p) = 0 if p,−x is on b

Note also that by the definition of ∗, w∗∗

x = wx and by the definition of @,
@∗∗ = @ i.e. the induced interpretation is a Routley interpretation.

• Completeness Lemma:

Let b be any open completed branch of a tableau. Let I =< W, ∗, v, @ > be
the interpretation induced by b. Then:

if A, +x is on b, A is true at wx

if A,−x is on b, A is false at wx

• Modifications to the proof:

Since @∗ has been redefined, we need new arguments for negation when
x = 0:

If ¬B, +0 is on b, then B,−0# is on b. By the new rule, B,−0 is on b. By
induction hypothesis, B is false at w0 = @. Hence B is false at @∗, and ¬B is
true at @, as required.

If ¬B,−0 is on b, then B, +0# is on b. By the new rule, B, +0 is on b. By
induction hypothesis, B is true at w0 = @. Hence B is true at @∗, and ¬B is
false at @ as required.

�
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