Solutions

Louis Barson Kyoto University

April 7, 2009

1. Check all the details omitted in 7.5.2.

I will first check the table on page 124. For this it will be useful to have a list of the characteristic features of the logics treated in this chapter:

 $K_3: \mathcal{D} = (1); i \text{ thought of as neither true nor false.}$

f_{\supset}	1	i	0
1	1	i	0
i	1	i	i
0	1	1	1

L₃: $\mathcal{D} = (1)$; *i* thought of as *neither true nor false*.

f_{\supset}	1	i	0
1	1	i	0
i	1	1	i
0	1	1	1

LP: $\mathcal{D} = (1, i)$; *i* thought of as both true and false.

f_{\supset}	1	i	0
1	1	i	0
i	1	i	i
0	1	1	1

 RM_3 : $\mathcal{D} = (1, i)$; *i* thought of as both true and false.

f_{\supset}	1	i	0
1	1	0	0
i	1	i	0
0	1	1	1

(1) $q \vDash_{K_3} p \supset q$

Suppose the conclusion is undesignated. Then by the truth table for \supset_{K_3} , there are four possibilities for p and q: (1, i), (1, 0), (i, i), (i, 0). In all cases, the premise q is undesignated.

(1) $q \vDash_{\mathbf{L}_3} p \supset q$

Suppose the conclusion is undesignated. Then by the truth table for $\supset_{\mathbf{L}_3}$, there are three possibilities for p and q: (1, i), (1, 0), and (i, 0). In all cases, the premise q is undesignated.

(1)
$$q \models_{LP} p \supset q$$

Suppose the conclusion is undesignated. Then the truth-value of $p \supset q$ is 0. So the truth value of q is 0.

(1)
$$q \nvDash_{RM_3} p \supset q$$

In the case where v(p) = 1, and v(q) = i, the premise is designated and conclusion undesignated, therefore the inference is invalid.

$$(2) \neg p \vDash_{K_3} p \supset q$$

Suppose the conclusion is undesignated. Then by the truth table for \supset_{K_3} , there are four possibilities for p and q: (1, i), (1, 0), (i, i), and (i, 0). In all cases, the premise $\neg p$ is undesignated.

(2)
$$\neg p \vDash_{\mathbf{L}_2} p \supset q$$

Suppose the conclusion is undesignated. Then by the truth table for $\supset_{\mathbf{L}_3}$, there are three possibilities for p and q: (1, i), (1, 0), and (i, 0). In all cases, the premise $\neg p$ is undesignated.

(2)
$$\neg p \models_{LP} p \supset q$$

Suppose the conclusion is undesignated. Then the truth-value of $p \supset q$ is 0. So the truth value of p is 1, and the truth value of $\neg p$ is 0.

 $(2) \neg p \nvDash_{RM_3} p \supset q$

In the case where v(p) = i, and v(q) = 0, the premise is designated and conclusion undesignated, therefore the inference is invalid.

(3) $(p \land q) \supset r \vDash_{K_3} (p \supset q) \lor (q \supset r)$

p	q	r	$(p \wedge q)$	$) \supset r$	$(p \supset q)$	V	$(q \supset r)$
p 1	1	1	1	1	$\frac{(p \supset q)}{1}$	1	1
1	1	i	1	i	1	1	i
1	1	0	1	0	1	1	0
1	i	1	i	1	i	1	1
1	i	i	i	i	i	i	i
1	i	0	i	i	i	i	i
1	0	1	0	1	0	1	1
1	0	i	0	1	0	1	1
1	0	0	0	1	0	1	1
i	1	1	i	1	1	1	1
i	1	i	i	i	1	1	i
i	1	0	i	i	1	1	0
i	i	1	i	1	i	1	1
i i	i	i	i	i	i	i	i
	i	0	i	i	i	i	i
i	0	1	0	1	i	1	1
i	0	i	0	1	i	1	1
i	0	0	0	1	i	1	1
0	1	1	0	1	1	1	1
0	1	i	0	1	1	1	i
0	1	0	0	1	1	1	0
0	i	1	0	1	1	1	1
0	i	i	0	1	1	1	i
0	i	0	0	1	1	1	i
0	0	1	0	1	1	1	1
0	0	i	0	1	1	1	1
0	0	0	0	1	1	1	1

Looking at the bolded columns, we can see that there is no interpretation where the premise is designated and conclusion undesignated. Therefore the inference is valid.

 $(3) \ (p \wedge q) \supset r \vDash_{\textbf{L}_3} (p \supset q) \vee (q \supset r)$

n	a	r	$(p \wedge q)$	$) \supset r$	$(p \supset q)$	V	$(q \supset r)$
p 1	$\frac{q}{1}$	1	$\frac{p \wedge q}{1}$	$\frac{1}{1}$	$\frac{(p \supset q)}{1}$	${1}$	$\frac{(q \cup r)}{1}$
1	1	i	1	i	1	1	i
1	1	0	1	ů 0	1	1	0
1	i	1	i	1	i	1	1
1	i^{v}	i	i		i	$\frac{1}{i}$	1
1	i^{v}	0	i	$\frac{1}{i}$	i	i^{v}	i
1	0	1	0	1	0	1	1
1	0	i	0	1	0	1	1
1	0	0	0	1	ů 0	1	1
i	1	1	i	1	1	1	1
i	1	i	i	1	1	1	i
i	1	0	i	\overline{i}	1	1	0
i	i	1	i	1	1	1	1
	i	i	i	1	1	1	1
$i \\ i$	i	0	i	i	1	1	i
i	0	1	0	1	i	1	1
	0	i	0	1	i	1	1
$i \\ i$	0	0	0	1	i	1	1
0	1	1	0	1	1	1	1
0	1	i	0	1	1	1	i
0	1	0	0	1	1	1	0
0	i	1	0	1	1	1	1
0	i	i	0	1	1	1	1
0	i	0	0	1	1	1	i
0	0	1	0	1	1	1	1
0	0	i	0	1	1	1	1
0	0	0	0	1	1	1	1

Looking at the bolded columns, we can see that there is no interpretation where the premise is designated and conclusion undesignated. Therefore the inference is valid.

(3) $(p \land q) \supset r \vDash_{LP} (p \supset q) \lor (q \supset r)$

p	q	r	$(p \wedge q)$	$) \supset r$	$(p \supset q)$	V	$(q \supset r)$
1	1	1	1	1	1	1	1
1	1	i	1	i	1	1	i
1	1	0	1	0	1	1	0
1	i	1	i	1	i	1	1
1	i	i	i	i	i	i	$i \\ i$
1	i	0	i	i	i	i	
1	0	1	0	1	0	1	1
1	0	i	0	1	0	1	1
1	0	0	0	1	0	1	1
i	1	1	i	1	1	1	1
i	1	i	i	i	1	1	i
i	1	0	i	i	1	1	0
i	i	1	i	1	i	1	1
$i \\ i$	i	i	i	i	i	i	i
	i	0	i	i	i	i	i
$i \\ i$	0	1	0	1	i	1	1
i	0	i	0	1	i	1	1
i	0	0	0	1	i	1	1
0	1	1	0	1	1	1	1
0	1	i	0	1	1	1	i
0	1	0	0	1	1	1	0
0	i	1	0	1	1	1	1
0	i	i	0	1	1	1	i
0	i	0	0	1	1	1	i
0	0	1	0	1	1	1	1
0	0	i	0	1	1	1	1
0	0	0	0	1	1	1	1

Looking at the bolded columns, we can see that there is no interpretation where the premise is designated and conclusion undesignated. Therefore the inference is valid.

(3) $(p \land q) \supset r \vDash_{RM_3} (p \supset q) \lor (q \supset r)$

p	q	r	$(p \wedge q)$	$) \supset r$	$(p \supset q)$	\vee	$(q \supset r)$
p 1	1	1	1	1	1	1	1
1	1	i	1	0	1	1	0
1	1	0	1	0	1	1	0
1	i	1	i	1	0	1	1
1	i	i	i	i	0	i	i
1	i	0	i	0	0	0	0
1	0	1	0	1	0	1	1
1	0	i	0	1	0	1	1
1	0	0	0	1	0	1	1
i	1	1	i	1	1	1	1
i	1	i	i	i	1	1	0
i	1	0	i	0	1	1	0
i	i	1	i	1	i	1	1
$i \\ i$	i	i	i	i	i	i	i
	i	0	i	0	i	i	0
i	0	1	0	1	0	1	1
i	0	i	0	1	0	1	1
i	0	0	0	1	0	1	1
0	1	1	0	1	1	1	1
0	1	i	0	1	1	1	0
0	1	0	0	1	1	1	0
0	i	1	0	1	1	1	1
0	i	i	0	1	1	1	i
0	i	0	0	1	1	1	0
0	0	1	0	1	1	1	1
0	0	i	0	1	1	1	1
0	0	0	0	1	1	1	1

Looking at the bolded columns, we can see that there is no interpretation where the premise is designated and conclusion undesignated. Therefore the inference is valid.

$$(4) \ (p \supset q) \land (r \supset s) \vDash_{K_3} (p \supset s) \lor (r \supset q)$$

Suppose the conclusion is undesignated. Then it takes either the value 0 or the value i.

If the truth-value of the conclusion $(p \supset s) \lor (r \supset q)$ is 0, then the truth value of both $p \supset s$ and $r \supset q$ is also 0. Looking at the truth-table for \supset_{K_3} we can see that this only happens when, as in the classical case, the antecedent is true, and consequent false. Thus p and r take 1, s and q take 0. But then the truth value of $p \supset q$ is 0, and the conjunct $(p \supset q) \land (r \supset s)$ is also: the premise is undesignated.

If the conclusion takes the value i, looking at the truth-table for \lor , we can see there are three possibilities: (i, i), (0, i),or (i, 0).

 $v(p\supset s)=i,\,v(r\supset q)=i$

By the truth-table for \supset_{K_3} , there are three possibilities for each conditional: (1, i), (i, i), (i, 0). The nine combinations are listed below.

p	\supset	s	r	\supset	q
1		i	1		$i \\ i$
1		$i \\ i$	$\frac{1}{i}$		
1		i	i		0
i		i i i i	1		$_{i}^{i}$
i		i	$i \\ i$		
i		i	i		0
i		0	1		$_{i}^{i}$
1 1 1 <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>		0	$\begin{array}{c} 1 \\ i \\ i \end{array}$		
i		0	i		0

Looking at the bolded columns for p and q, we can see that on any of these interpretations, $p \supset q$ will come out as i or 0, i.e. undesignated. Thus the conjunct will also: the premise is undesignated on all these interpretations.

$$v(p\supset s)=0,\,v(r\supset q)=i$$

v(p) = 1, v(s) = 0. There are three possibilities for r and q: (1, i), (i, i), and (i, 0). Thus there are three possibilities for $p \supset q$, (i, i, 0) respectively. In these interpretations also, $p \supset q$ is undesignated, so the conjunctive premise, is undesignated.

 $v(p\supset s)=i,\,v(p\supset s)=0$

v(r) = 1, v(q) = 0. There are three possibilities for p and s: (1, i), (i, i), and (i, 0). Thus there are three possibilities for $p \supset q$, (0, i, i) respectively. In these interpretations also, $p \supset q$ is undesignated, so the conjunct, i.e. the premise, is undesignated.

There is no interpretation where the conclusion is undesignated, and premise designated, therefore the inference is valid.

$$(4) \ (p \supset q) \land (r \supset s) \vDash_{\mathbf{L}_3} (p \supset s) \lor (r \supset q)$$

Suppose the conclusion is undesignated. Then it takes either the value 0 or the value i.

If the truth-value of the conclusion $(p \supset s) \lor (r \supset q)$ is 0, then both $p \supset s$ and $r \supset q$ are also 0. Looking at the truth-table for \supset_{L_3} we can see that this only happens when, as in the classical case, the antecedent is true, and consequent false. Thus p and r take 1, s and q take 0. But then the truth value of $p \supset q$ is 0, and the conjunct $(p \supset q) \land (r \supset s)$ is also: the premise is undesignated.

If the conclusion takes the value i, looking at the truth-table for \lor , we can see there are three possibilities: (i, i), (0, i),or (i, 0).

$$v(p\supset s)=i,\,v(r\supset q)=i$$

By the truth-table for \supset_{L_3} , there are two possibilities for each conditional: (1, i) and (i, 0). The four combinations are listed below.

p	\supset	s	r	\supset	q
1		i	1		i
1		i	i		0
i		0	1		i
i		0	i		0

Looking at the bolded columns for p and q, we can see that on any of these interpretations, $p \supset q$ will come out as i or 0, i.e. undesignated. Thus the conjunct will also: the premise is undesignated.

 $v(p\supset s)=0,\,v(r\supset q)=i$

v(p) = 1, v(s) = 0. There are two possibilities for r and q: (1, i) and (i, 0). Thus there are two possibilities for $p \supset q$: (i, 0). $p \supset q$ is undesignated, so the premise, is undesignated.

 $v(p\supset s)=i,\,v(p\supset s)=0$

v(r) = 1, v(q) = 0. There are two possibilities for p and s: (1, i) and (i, 0). Thus there are two possibilities for $p \supset q$: (0, i). In these interpretations also, $p \supset q$ is undesignated, so the conjunct, i.e. the premise, is undesignated.

There is no interpretation where the conclusion is undesignated, and premise designated, therefore the inference is valid.

(4) $(p \supset q) \land (r \supset s) \vDash_{LP} (p \supset s) \lor (r \supset q)$

Suppose the conclusion to be undesignated. Then it takes the value 0.

If the conclusion $(p \supset s) \lor (r \supset q)$ takes the value 0, then both $p \supset s$ and $r \supset q$ take the value 0. Looking at the truth-table for \supset we can see that this only happens in the classical case. Thus p and r take 1, s and q take 0. But then $p \supset q$ takes 0, and the conjunct takes 0: the premise is undesignated.

There is no interpretation where the conclusion is undesignated, and premise designated, therefore the inference is valid.

 $(4) \ (p \supset q) \land (r \supset s) \vDash_{RM_3} (p \supset s) \lor (r \supset q)$

Suppose the conclusion to be undesignated. Then it takes the value 0.

If the conclusion $(p \supset s) \lor (r \supset q)$ takes the value 0, then both $p \supset s$ and $r \supset q$ take the value 0. Looking at the truth-table for \supset_{RM_3} we can see that there are three possibilities for each conditional: (1, i), (1, 0), and (i, 0). The nine combinations are listed below.

p	\supset	s	r	\supset	q
1		$i \\ i$	1		<i>i</i> 0
1 1		i	1		
		i	i		0
1 1		0	1		0 i 0
1		0	1		0
1		0	i		0 i 0
i		0	1		i
$\begin{array}{c c} 1 \\ 1 \\ i \\ i \\ i \\ i \end{array}$		0	1		0
i		0	i		0

Looking at the bolded columns for p and q, we can see that on any of these interpretations (except line 7), $p \supset q$ comes out as i or 0, i.e. undesignated. Thus the conjunct does also: the premise is undesignated. On line 7, $r \supset s$ is undesignated, so again the premise is undesignated. (5) $\neg (p \supset q) \vDash_{K_3} p$

Suppose the premise is designated. Then $\neg(p \supset q)$ takes the value 1. Then $p \supset q$ takes 0. This only happens in the classical case, where p takes 1, and q takes 0. But since p takes 1, the conclusion is designated.

(5) $\neg (p \supset q) \vDash_{\mathbf{L}_2} p$

Suppose the premise is designated. Then $\neg(p \supset q)$ takes the value 1. Then $p \supset q$ takes 0. This only happens in the classical case, where p takes 1, and q takes 0. But since p takes 1, the conclusion is designated.

$$(5) \neg (p \supset q) \vDash_{LP} p$$

Suppose the conclusion is undesignated. Then p takes the value 0. Then $p \supset q$ takes 1, or i. So the premise $\neg(p \supset q)$ takes 0 or i, and is undesignated.

(5)
$$\neg (p \supset q) \vDash_{RM_3} p$$

Suppose the conclusion is undesignated. Then p takes the value 0. Then $p \supset q$ takes 1, or i. So the premise $\neg(p \supset q)$ takes 0 or i, and is undesignated.

(6)
$$p \supset r \vDash_{K_3} (p \land q) \supset r$$

Suppose the conclusion is undesignated. Then $(p \wedge q) \supset r$ takes the value 0 or *i*.

If it takes 0, then $p \wedge q$ takes 1, and r takes 0. Hence p takes 1, making $p \supset r$ false: the premise is undesignated.

If it takes *i*, then there are three possibilities: (1, i), (i, i), (i, 0).

For the first case, $p \wedge q$ is true, so p and q take 1. v(r) = i, so $v(p \supset r) = i$: the premise is undesignated.

For the second and third case, $v(p \land q) = i$, so one of p and q is i (the other is i or 1). In either case, the antecedent of the premise is i, and the consequent is i or 0 respectively. In either case the premise is undesignated.

(6) $p \supset r \vDash_{\mathbf{L}_3} (p \land q) \supset r$

Suppose the conclusion is undesignated. Then $(p \wedge q) \supset r$ takes the value 0 or *i*.

If it takes 0, then $p \wedge q$ takes 1, and r takes 0. Hence p takes 1, making $p \supset r$ false: the premise is undesignated.

If it takes *i*, then there are two possibilities: (1, i) and (i, 0).

For the first case, $p \wedge q$ is true, so p and q take 1. v(r) = i, so $v(p \supset r) = i$: the premise is undesignated.

For the second case, $v(p \wedge q) = i$, so one of p and q is i (the other is i or 1). In either case, the antecedent of the premise is i, and the consequent is 0, so the premise is undesignated.

(6)
$$p \supset r \vDash_{LP} (p \land q) \supset r$$

Suppose the conclusion is undesignated. Then $(p \land q) \supset r$ takes the value 0. Accordingly $p \land q$ takes 1, and r takes 0. Hence p takes 1, making $p \supset r$ false: the premise is undesignated.

(6)
$$p \supset r \vDash_{RM_3} (p \land q) \supset r$$

Suppose the conclusion is undesignated. Then $(p \land q) \supset r$ takes the value 0. Looking at the truth-table for RM_3 , there are three possibilities, (1, i), (1, 0), and (i, 0).

 $v(p \wedge q) = 1, v(r) = i$ $v(p \wedge q) = 1$, so v(p) = 1. Therefore $v(p \supset r) = 0$: the premise is undesig-

nated.

 $v(p \land q) = 1, v(r) = 0$ $v(p \land q) = 1$, so v(p) = 1. Therefore $v(p \supset r) = 0$: the premise is undesignated.

$$v(p \land q) = i, v(r) = 0$$

 $v(p \wedge q) = i$, so v(p) = i or 1. Therefore $v(p \supset r) = 0$: the premise is undesignated.

(7)
$$p \supset q, q \supset r \vDash_{K_3} p \supset r$$

Suppose the conclusion is undesignated. Then $v(p \supset r) = 0$, or $v(p \supset r) = i$.

If $v(p \supset r) = 0$, then v(p) = 1, v(r) = 0. If v(q) = 0 then $v(p \supset q) = 0$. If v(q) = 1 then $v(q \supset r) = 0$. If v(q) = i, then $v(p \supset q) = i$ In either case, the premise is undesignated.

If $v(p \supset r) = i$ then there are three possibilities: (1, i), (i, i), (i, 0)

$$v(p)=1, v(r)=i$$

If v(q) = 0, then $v(p \supset q) = 0$. If v(q) = 1 then $v(q \supset r) = i$. If v(q) = i, then $v(p \supset q) = i$ In either case, the premise is undesignated.

$$v(p) = i, v(r) = i$$

If v(q) = 0, then $v(p \supset q) = i$. If v(q) = 1 then $v(q \supset r) = i$. If v(q) = i, then $v(p \supset q) = i$ In either case, the premise is undesignated.

$$v(p) = i, v(r) = 0$$

If v(q) = 0, then $v(p \supset q) = i$. If v(q) = 1 then $v(q \supset r) = 0$. If v(q) = i, then $v(p \supset q) = i$ In either case, the premise is undesignated.

(7)
$$p \supset q, q \supset r \vDash_{\mathbf{L}_3} p \supset r$$

Suppose the conclusion is undesignated. Then $v(p \supset r) = 0$, or $v(p \supset r) = i$.

If $v(p \supset r) = 0$, then v(p) = 1, v(r) = 0. If v(q) = 0 then $v(p \supset q) = 0$. If v(q) = 1 then $v(q \supset r) = 0$. If v(q) = i, then $v(p \supset q) = i$ In either case, the premise is undesignated.

If $v(p \supset r) = i$ then there are two possibilities: (1, i) and (i, 0)

$$v(p) = 1, v(r) = i$$

If v(q) = 0, then $v(p \supset q) = 0$. If v(q) = 1 then $v(q \supset r) = i$. If v(q) = i, then $v(p \supset q) = i$ In either case, the premise is undesignated.

 $\boxed{\begin{array}{l} v(p)=i,v(r)=0\\ \text{If }v(q)=0, \text{ then }v(p\supset q)=i. \text{ If }v(q)=1 \text{ then }v(q\supset r)=0. \text{ If }v(q)=i, \end{array}}$ then $v(q \supset r) = i$ In either case, the premise is undesignated.

(7)
$$p \supset q, q \supset r \nvDash_{LP} p \supset r$$

v(p) = 1, v(r) = 0, v(q) = i. On this valuation, the premises both take i, and hence are designated, but the conclusion is undesignated, showing that the inference is invalid.

(7)
$$p \supset q, q \supset r \vDash_{RM_3} p \supset r$$

Suppose the conclusion is undesignated. Then $v(p \supset r) = 0$.

Looking at the truth-table for \supset_{RM_3} , there are three possibilities: (1, i), (1, 0), (1and (i, 0)

 $\boxed{v(p) = 1, v(r) = i}$ If v(q) = 0, then $v(p \supset q) = 0$. If v(q) = 1 then $v(q \supset r) = 0$. If v(q) = i, then $v(p \supset q) = 0$ In either case, the premise is undesignated.

 $\boxed{\begin{array}{l} v(p) = 1, v(r) = 0 \\ \text{If } v(q) = 0, \text{ then } v(p \supset q) = 0. \text{ If } v(q) = 1 \text{ then } v(q \supset r) = 0. \text{ If } v(q) = i, \end{array}}$ then $v(q \supset r) = 0$ In either case, the premise is undesignated.

$$v(p) = i, v(r) = 0$$

If v(q) = 0, then $v(p \supset q) = 0$. If v(q) = 1 then $v(q \supset r) = 0$. If v(q) = i, then $v(q \supset r) = 0$ In either case, the premise is undesignated.

$$(8) \ p \supset q \vDash_{K_3} \neg q \supset \neg p$$

Suppose the conclusion is undesignated. Then $v(\neg q \supset \neg p)$ is either 0 or *i*.

If $v(\neg q \supset \neg p) = 0$, then $v(\neg q) = 1$ and $v(\neg p) = 0$. So v(q) = 0 and v(p) = 1. But then $v(p \supset q) = 0$.

If $v(\neg q \supset \neg p) = i$ then there are three possibilities: (1, i), (i, i), (i, 0)

 $\boxed{\begin{array}{l} v(\neg q) = 1, v(\neg p) = i \\ v(q) = 0, \text{ and } v(p) = 1, \text{ so } v(p \supset q) = i; \text{ the premise is undesignated.} \end{array}}$

 $\boxed{\begin{array}{c} v(\neg q) = i, v(\neg p) = i \\ v(q) = i, \text{ and } v(p) = i. \end{array}}$ Thus $v(p \supset q) = i$; the premise is undesignated.

 $\boxed{ v(\neg q) = i, v(\neg p) = 0 } \\ v(q) = i, \text{ and } v(p) = 1. \text{ Thus } v(p \supset q) = i; \text{ the premise is undesignated.}$

 $(8) \ p \supset q \vDash_{\mathbf{L}_3} \neg q \supset \neg p$

Suppose the conclusion is undesignated. Then $v(\neg q \supset \neg p)$ is either 0 or *i*.

If $v(\neg q \supset \neg p) = 0$, then $v(\neg q) = 1$ and $v(\neg p) = 0$. So v(q) = 0 and v(p) = 1. But then $v(p \supset q) = 0$.

If $v(\neg q \supset \neg p) = i$ then there are two possibilities: (1, i) and (i, 0)

 $\boxed{\begin{array}{c} v(\neg q) = 1, v(\neg p) = i \\ v(q) = 0, \text{ and } v(p) = 1, \text{ so } v(p \supset q) = i; \text{ the premise is undesignated.} \end{array}}$

 $v(\neg q) = i, v(\neg p) = 0$ v(q) = i, and v(p) = 1. Thus $v(p \supset q) = i$; the premise is undesignated.

$$(8) \ p \supset q \vDash_{LP} \neg q \supset \neg p$$

Suppose the conclusion is undesignated. Then $v(\neg q \supset \neg p) = 0$.

If $v(\neg q \supset \neg p) = 0$, then $v(\neg q) = 1$ and $v(\neg p) = 0$. So v(q) = 0 and v(p) = 1. But then $v(p \supset q) = 0$; the premise is undesignated.

 $(8) \ p \supset q \vDash_{RM_3} \neg q \supset \neg p$

Suppose the conclusion is undesignated. Then $v(\neg q \supset \neg p) = 0$.

There are three possibilities: (1, i), (1, 0), and (i, 0) $v(\neg q) = 1, v(\neg p) = i$ v(q) = 0 and v(p) = i. So $v(p \supset q) = 0$; the premise is undesignated.

$$\frac{v(\neg q) = 1, v(\neg p) = 0}{v(q) = 0 \text{ and } v(p) = 1.}$$
 So $v(p \supset q) = 0$; the premise is undesignated.

$$\boxed{\begin{array}{l}v(\neg q) = i, v(\neg p) = 0\\v(q) = i \text{ and } v(p) = 1.\end{array}}$$
 So $v(p \supset q) = 0$; the premise is undesignated.

$$(9) \nvDash_{K_3} p \supset (q \lor \neg q)$$

v(p) = 1, v(q) = i — On this interpretation the truth-value of the conditional is *i*, which is not designated in K_3 .

 $(9) \nvDash_{\mathbf{L}_3} p \supset (q \lor \neg q)$

v(p) = 1, v(q) = i — On this interpretation the truth-value of the conditional is *i*, which is not designated in L₃.

$$(9) \vDash_{LP} p \supset (q \lor \neg q)$$

Suppose the conclusion is undesignated, then $v(q \lor \neg q) = 0$ But the only way this could come about were if v(q) = 0 and $v(\neg q) = 0$, which cannot be. Since there is no interpretation showing the conclusion to be undesignated, the inference is valid. $(9) \nvDash_{RM_3} p \supset (q \lor \neg q)$

v(p) = 1, v(q) = i — On this interpretation the truth-value of the conditional is 0

$$(10) \nvDash_{K_3} (p \land \neg p) \supset q$$

v(p) = i, v(q) = 0 — On this interpretation the truth-value of the conditional is *i*, which is not designated in K_3 .

$$(10) \nvDash_{\mathbf{L}_2} (p \land \neg p) \supset q$$

v(p) = i, v(q) = 0 — On this interpretation the truth-value of the conditional is *i*, which is not designated in L₃.

$$(10)\vDash_{LP} (p \land \neg p) \supset q$$

Suppose the conclusion is undesignated, then $v((p \land \neg p) \supset q) = 0$. Therefore $v(p \land \neg p) = 1$, which is impossible.

$$(10) \nvDash_{RM_3} (p \land \neg p) \supset q$$

v(p)=i, v(q)=0 — On this interpretation the truth-value of the conditional is 0.

2. Call a many-valued logic in the language of the classical propositional calculus *normal* if, amongst its truth values are two, 1 and 0, such that 1 is designated, 0 is not, and for every truth function corresponding to a connective, the output for these inputs is the same as the classical output. $(K_3, L_3, LP \text{ and } RM_3 \text{ are all normal.})$ Show that every normal many-valued logic is a sub-logic of classical logic (i.e., that every inference valid in the logic is valid in classical logic).

Contrapositive proof: Take an inference which is invalid in classical logic: $\Sigma \nvDash A$. Consider a classical interpretation showing this to be invalid, I. Because all formulae in Σ and A are truth-functional, and all inputs in classical logic are 1 or 0, there is a normal interpretation I^N which agrees with I on its assignment of truth-values. I^N shows $\Sigma \nvDash A$ in all normal many-valued logics.

3. Observe that in K_3 if an interpretation assigns the value *i* to a propositional parameter that occurs in a formula, then it assigns that value to the formula itself. Infer that there are no logical truths in K_3 . Are there any logical truths in L_3 ?

A logical truth is a sentence that is designated on all interpretations. There are no such sentences in K_3 :

As observed in the question, for all formulas, there is a interpretation that assigns i to all propositional parameters in the formula, and hence assigns the value to the whole formula. (This can be seen by a quick look at the truth-tables for K_3 .) Since i is not designated, all sentences in K_3 are undesignated on the interpretation which assigns i to all parameters. Therefore there are no logical truths in K_3 .

There are logical truths in L₃. For instance $\vDash_{L_3} A \supset A$, as can be shown by a short truth-table:

A	$A \supset A$
1	1
i	1
0	1

4. Let v_1 and v_2 be any interpretations of K_3 or LP. Write $v_1 \leq v_2$ to mean that for every propositional parameter p:

if
$$v_1(p) = 1$$
, then $v_2(p) = 1$; and if $v_1(p) = 0$, then $v_2(p) = 0$

Show by induction on the way that formulas are constructed, that if $v_1 \leq v_2$, then the displayed condition is true for all formulas. Does the result hold for L_3 and RM_3 ?

For both K_3 and LP:

The atomic case requires no argument.

$$\boxed{\neg A}$$

If $v_1(\neg A) = 1$, then $v_1(A) = 0$. So $v_2(A) = 0$. But then $v_2(\neg A) = 1$

 $\begin{array}{c} \underline{A \wedge B} \\ \text{If } v_1(A \wedge B) = 1, \text{ then } v_1(A) = 1 \text{ and } v_1(B) = 1. \text{ So } v_2(A) = 1 \text{ and } \\ v_2(B) = 1. \text{ But then } v_2(A \wedge B) = 1. \end{array}$

If $v_1(A \wedge B) = 0$, then $v_1(A) = 0$ or $v_1(B) = 0$. So $v_2(A) = 0$ or $v_2(B) = 0$. But then $v_2(A \wedge B) = 0$.

$$A \lor B$$

If $a_{1}(A)$

If $v_1(A \lor B) = 1$, then $v_1(A) = 1$ or $v_1(B) = 1$. So $v_2(A) = 1$ or $v_2(B) = 1$. But then $v_2(A \lor B) = 1$.

If $v_1(A \vee B) = 0$, then $v_1(A) = 0$ and $v_1(B) = 0$. So $v_2(A) = 0$ and $v_2(B) = 0$. But then $v_2(A \vee B) = 0$.

 $\begin{array}{c} \hline A \supset B \\ \hline \text{If } v_1(A \supset B) = 1, \text{ then } v_1(A) = 0 \text{ or } v_1(B) = 1. \text{ So } v_2(A) = 0 \text{ and} \\ v_2(B) = 1. \text{ But then } v_2(A \supset B) = 1. \end{array}$

If $v_1(A \supset B) = 0$, then $v_1(A) = 1$ and $v_1(B) = 0$. So $v_2(A) = 1$ or $v_2(B) = 0$. But then $v_2(A \supset B) = 0$.

 $\begin{bmatrix} A \equiv B \\ \text{If } v_1(A \equiv B) = 1, \text{ then } v_1(A) = v_1(B) = 1 \text{ or } v_1(A) = v_1(B) = 0. \text{ So} \\ v_2(A) = v_2(B) = 1 \text{ or } v_2(A) = v_2(B) = 0. \text{ But then } v_2(A \equiv B) = 1.$

If $v_1(A \equiv B) = 0$, then $v_1(A) = 1$, $v_1(B) = 0$ or $v_1(A) = 0$, $v_1(B) = 1$. So $v_2(A) = 1$, $v_2(B) = 0$ or $v_2(A) = 0$, $v_2(B) = 1$. But then $v_2(A \equiv B) = 0$.

The result does not hold in L_3 or RM_3 . In both, \supset presents an exception:

For L_3 :

Let $v_1(p) = v_1(q) = i$, and $v_2(p) = 1, v_2(q) = 0$. Then $v_1 \leq v_2$, but $v_1(p \supset q) = 1$ and $v_2(p \supset q) = 0$.

For RM_3

Let $v_1(p) = 1, v_1(q) = i$, and $v_2(p) = 1, v_2(q) = 1$. Then $v_1 \leq v_2$, but $v_1(p \supset q) = 0$ and $v_2(p \supset q) = 1$.

5. By problem 2, if $\vDash_{LP} A$, then A is a classical logic truth. Use problem 4 to show the converse. (Hint: Suppose that v is an LP interpretation such that v(A) = 0. Consider the interpretation, v', which is the same as v except that if v(p) = i, v'(p) = 0.)

We need to prove that there is no case of a classical logical truth which is invalid in *LP*. Converse proof: Suppose that v is an *LP* interpretation such that $\nvDash_{LP} A$. Let v' be any classical interpretation which is obtained by substituting 1 or 0 for every instance of i in v. Then $v \leq v'$. By problem 4, this means that if v(A) = 0, v'(A) = 0. So, v' is a classical interpretation which shows that $\nvDash A$.

9. *Fill in the details omitted in 7.11.2.

Lemma: For no n is D_{n+1} a logical truth of any modal logic weaker than Kv or of intuitionist logic.

I will first show the result for Kv.

 D_{n+1} is the disjunction of all sentences of the form $\Box(p_i \supset p_j) \land \Box(p_j \supset p_i)$, where $1 \leq i < j \leq n+1$. Since *i* and *j* are defined as distinct, there is a Kvinterpretation with a world where p_i is true and p_j is false, (or p_i is false and p_j is true), for each pair of *i* and *j*. This interpretation will make the disjunction false at every world. To help to visualise this, here is a counter-model for D_1

$$\nvDash_{Kv} \Box (p_1 \supset p_2) \land \Box (p_2 \supset p_1)$$
$$W = \{w_0, w_1\}; v_{w_1}(p_1) = 1, v_{w_1}(p_2) = 0$$

Clearly the inference is invalid, because w_1 of the interpretation shows the left conjunct to be false.

A similar proof works for intuitionist logic:

 D_{n+1} is the disjunction of all sentences of the form $(p_i \Box p_j) \land (p_j \Box p_i)$, where $1 \leq i < j \leq n+1$. Since *i* and *j* are defined as distinct, we can create an intuitionist interpretation with a world where p_i is false, and p_j is true (or vice versa), for each pair of *i* and *j*. However we also need the interpretation to satisfy the heredity condition. Let worlds which contain p_i and p_j be w_{ij} . And let w_0 be such that no parameters are true at w_0 , and for all w_{ij} , Rw_0w_{ij} . This interpretation will make the disjunction false at w_0 . To help to visualise this, here is a counter-model for D_1 :

 $\nvDash_{I} \Box(p_{1} \supset p_{2}) \land \Box(p_{2} \supset p_{1})$ $W = \{w_{0}, w_{1}\}; Rw_{0}w_{0}, Rw_{0}w_{1}, Rw_{1}w_{1}; v_{w_{1}}(p_{1}) = 1, v_{w_{1}}(p_{2}) = 0$

The result has been shown for $K\upsilon$ and intuitionist logic, therefore it holds for all weaker logics.