
Solutions

Louis Barson

Kyoto University

April 7, 2009

1. Check all the details omitted in 7.5.2.

I will first check the table on page 124. For this it will be useful to have a
list of the characteristic features of the logics treated in this chapter:

K3: D = (1); i thought of as neither true nor false.

f⊃ 1 i 0
1 1 i 0
i 1 i i

0 1 1 1

 L3: D = (1); i thought of as neither true nor false.

f⊃ 1 i 0
1 1 i 0
i 1 1 i

0 1 1 1

LP : D = (1, i); i thought of as both true and false.

f⊃ 1 i 0
1 1 i 0
i 1 i i

0 1 1 1

RM3: D = (1, i); i thought of as both true and false.

f⊃ 1 i 0
1 1 0 0
i 1 i 0
0 1 1 1
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(1) q �K3
p ⊃ q

Suppose the conclusion is undesignated. Then by the truth table for ⊃K3
,

there are four possibilities for p and q: (1, i), (1, 0), (i, i), and (i, 0). In all cases,
the premise q is undesignated.

(1) q � L3

p ⊃ q

Suppose the conclusion is undesignated. Then by the truth table for ⊃ L3

,
there are three possibilities for p and q: (1, i), (1, 0), and (i, 0). In all cases, the
premise q is undesignated.

(1) q �LP p ⊃ q

Suppose the conclusion is undesignated. Then the truth-value of p ⊃ q is 0.
So the truth value of q is 0.

(1) q 2RM3
p ⊃ q

In the case where v(p) = 1, and v(q) = i, the premise is designated and
conclusion undesignated, therefore the inference is invalid.

(2) ¬p �K3
p ⊃ q

Suppose the conclusion is undesignated. Then by the truth table for ⊃K3
,

there are four possibilities for p and q: (1, i), (1, 0), (i, i), and (i, 0). In all cases,
the premise ¬p is undesignated.

(2) ¬p � L3

p ⊃ q

Suppose the conclusion is undesignated. Then by the truth table for ⊃ L3

,
there are three possibilities for p and q: (1, i), (1, 0), and (i, 0). In all cases, the
premise ¬p is undesignated.

(2) ¬p �LP p ⊃ q

Suppose the conclusion is undesignated. Then the truth-value of p ⊃ q is 0.
So the truth value of p is 1, and the truth value of ¬p is 0.

(2) ¬p 2RM3
p ⊃ q

In the case where v(p) = i, and v(q) = 0, the premise is designated and
conclusion undesignated, therefore the inference is invalid.
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(3) (p ∧ q) ⊃ r �K3
(p ⊃ q) ∨ (q ⊃ r)

p q r (p ∧ q) ⊃ r (p ⊃ q) ∨ (q ⊃ r)
1 1 1 1 1 1 1 1
1 1 i 1 i 1 1 i

1 1 0 1 0 1 1 0
1 i 1 i 1 i 1 1
1 i i i i i i i

1 i 0 i i i i i

1 0 1 0 1 0 1 1
1 0 i 0 1 0 1 1
1 0 0 0 1 0 1 1
i 1 1 i 1 1 1 1
i 1 i i i 1 1 i

i 1 0 i i 1 1 0
i i 1 i 1 i 1 1
i i i i i i i i

i i 0 i i i i i

i 0 1 0 1 i 1 1
i 0 i 0 1 i 1 1
i 0 0 0 1 i 1 1
0 1 1 0 1 1 1 1
0 1 i 0 1 1 1 i

0 1 0 0 1 1 1 0
0 i 1 0 1 1 1 1
0 i i 0 1 1 1 i

0 i 0 0 1 1 1 i

0 0 1 0 1 1 1 1
0 0 i 0 1 1 1 1
0 0 0 0 1 1 1 1

Looking at the bolded columns, we can see that there is no interpretation
where the premise is designated and conclusion undesignated. Therefore the
inference is valid.
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(3) (p ∧ q) ⊃ r � L3

(p ⊃ q) ∨ (q ⊃ r)

p q r (p ∧ q) ⊃ r (p ⊃ q) ∨ (q ⊃ r)
1 1 1 1 1 1 1 1
1 1 i 1 i 1 1 i

1 1 0 1 0 1 1 0
1 i 1 i 1 i 1 1
1 i i i 1 i i 1
1 i 0 i i i i i

1 0 1 0 1 0 1 1
1 0 i 0 1 0 1 1
1 0 0 0 1 0 1 1
i 1 1 i 1 1 1 1
i 1 i i 1 1 1 i

i 1 0 i i 1 1 0
i i 1 i 1 1 1 1
i i i i 1 1 1 1
i i 0 i i 1 1 i

i 0 1 0 1 i 1 1
i 0 i 0 1 i 1 1
i 0 0 0 1 i 1 1
0 1 1 0 1 1 1 1
0 1 i 0 1 1 1 i

0 1 0 0 1 1 1 0
0 i 1 0 1 1 1 1
0 i i 0 1 1 1 1
0 i 0 0 1 1 1 i

0 0 1 0 1 1 1 1
0 0 i 0 1 1 1 1
0 0 0 0 1 1 1 1

Looking at the bolded columns, we can see that there is no interpretation
where the premise is designated and conclusion undesignated. Therefore the
inference is valid.

4



(3) (p ∧ q) ⊃ r �LP (p ⊃ q) ∨ (q ⊃ r)

p q r (p ∧ q) ⊃ r (p ⊃ q) ∨ (q ⊃ r)
1 1 1 1 1 1 1 1
1 1 i 1 i 1 1 i

1 1 0 1 0 1 1 0
1 i 1 i 1 i 1 1
1 i i i i i i i

1 i 0 i i i i i

1 0 1 0 1 0 1 1
1 0 i 0 1 0 1 1
1 0 0 0 1 0 1 1
i 1 1 i 1 1 1 1
i 1 i i i 1 1 i

i 1 0 i i 1 1 0
i i 1 i 1 i 1 1
i i i i i i i i

i i 0 i i i i i

i 0 1 0 1 i 1 1
i 0 i 0 1 i 1 1
i 0 0 0 1 i 1 1
0 1 1 0 1 1 1 1
0 1 i 0 1 1 1 i

0 1 0 0 1 1 1 0
0 i 1 0 1 1 1 1
0 i i 0 1 1 1 i

0 i 0 0 1 1 1 i

0 0 1 0 1 1 1 1
0 0 i 0 1 1 1 1
0 0 0 0 1 1 1 1

Looking at the bolded columns, we can see that there is no interpretation
where the premise is designated and conclusion undesignated. Therefore the
inference is valid.
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(3) (p ∧ q) ⊃ r �RM3
(p ⊃ q) ∨ (q ⊃ r)

p q r (p ∧ q) ⊃ r (p ⊃ q) ∨ (q ⊃ r)
1 1 1 1 1 1 1 1
1 1 i 1 0 1 1 0
1 1 0 1 0 1 1 0
1 i 1 i 1 0 1 1
1 i i i i 0 i i

1 i 0 i 0 0 0 0
1 0 1 0 1 0 1 1
1 0 i 0 1 0 1 1
1 0 0 0 1 0 1 1
i 1 1 i 1 1 1 1
i 1 i i i 1 1 0
i 1 0 i 0 1 1 0
i i 1 i 1 i 1 1
i i i i i i i i

i i 0 i 0 i i 0
i 0 1 0 1 0 1 1
i 0 i 0 1 0 1 1
i 0 0 0 1 0 1 1
0 1 1 0 1 1 1 1
0 1 i 0 1 1 1 0
0 1 0 0 1 1 1 0
0 i 1 0 1 1 1 1
0 i i 0 1 1 1 i

0 i 0 0 1 1 1 0
0 0 1 0 1 1 1 1
0 0 i 0 1 1 1 1
0 0 0 0 1 1 1 1

Looking at the bolded columns, we can see that there is no interpretation
where the premise is designated and conclusion undesignated. Therefore the
inference is valid.
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(4) (p ⊃ q) ∧ (r ⊃ s) �K3
(p ⊃ s) ∨ (r ⊃ q)

Suppose the conclusion is undesignated. Then it takes either the value 0 or
the value i.

If the truth-value of the conclusion (p ⊃ s) ∨ (r ⊃ q) is 0, then the truth
value of both p ⊃ s and r ⊃ q is also 0. Looking at the truth-table for ⊃K3

we
can see that this only happens when, as in the classical case, the antecedent is
true, and consequent false. Thus p and r take 1, s and q take 0. But then the
truth value of p ⊃ q is 0, and the conjunct (p ⊃ q)∧ (r ⊃ s) is also: the premise
is undesignated.

If the conclusion takes the value i, looking at the truth-table for ∨, we can
see there are three possibilities: (i, i), (0, i), or (i, 0).

v(p ⊃ s) = i, v(r ⊃ q) = i

By the truth-table for ⊃K3
, there are three possibilities for each conditional:

(1, i), (i, i), and (i, 0). The nine combinations are listed below.

p ⊃ s r ⊃ q

1 i 1 i

1 i i i

1 i i 0

i i 1 i

i i i i

i i i 0

i 0 1 i

i 0 i i

i 0 i 0

Looking at the bolded columns for p and q, we can see that on any of these
interpretations, p ⊃ q will come out as i or 0, i.e. undesignated. Thus the
conjunct will also: the premise is undesignated on all these interpretations.

v(p ⊃ s) = 0, v(r ⊃ q) = i

v(p) = 1, v(s) = 0. There are three possibilities for r and q: (1, i), (i, i),
and (i, 0). Thus there are three possibilities for p ⊃ q, (i, i, 0) respectively. In
these interpretations also, p ⊃ q is undesignated, so the conjunctive premise, is
undesignated.
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v(p ⊃ s) = i, v(p ⊃ s) = 0

v(r) = 1, v(q) = 0. There are three possibilities for p and s: (1, i), (i, i), and
(i, 0).Thus there are three possibilities for p ⊃ q, (0, i, i) respectively. In these
interpretations also, p ⊃ q is undesignated, so the conjunct, i.e. the premise, is
undesignated.

There is no interpretation where the conclusion is undesignated, and premise
designated, therefore the inference is valid.

(4) (p ⊃ q) ∧ (r ⊃ s) � L3

(p ⊃ s) ∨ (r ⊃ q)

Suppose the conclusion is undesignated. Then it takes either the value 0 or
the value i.

If the truth-value of the conclusion (p ⊃ s) ∨ (r ⊃ q) is 0, then both p ⊃ s

and r ⊃ q are also 0. Looking at the truth-table for ⊃ L3

we can see that this
only happens when, as in the classical case, the antecedent is true, and conse-
quent false. Thus p and r take 1, s and q take 0. But then the truth value of
p ⊃ q is 0, and the conjunct (p ⊃ q)∧(r ⊃ s) is also: the premise is undesignated.

If the conclusion takes the value i, looking at the truth-table for ∨, we can
see there are three possibilities: (i, i), (0, i), or (i, 0).

v(p ⊃ s) = i, v(r ⊃ q) = i

By the truth-table for ⊃ L3

, there are two possibilities for each conditional:
(1, i) and (i, 0). The four combinations are listed below.

p ⊃ s r ⊃ q

1 i 1 i

1 i i 0

i 0 1 i

i 0 i 0

Looking at the bolded columns for p and q, we can see that on any of these
interpretations, p ⊃ q will come out as i or 0, i.e. undesignated. Thus the
conjunct will also: the premise is undesignated.

v(p ⊃ s) = 0, v(r ⊃ q) = i

v(p) = 1, v(s) = 0. There are two possibilities for r and q: (1, i) and (i, 0).
Thus there are two possibilities for p ⊃ q: (i, 0). p ⊃ q is undesignated, so the
premise, is undesignated.
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v(p ⊃ s) = i, v(p ⊃ s) = 0

v(r) = 1, v(q) = 0. There are two possibilities for p and s: (1, i) and
(i, 0).Thus there are two possibilities for p ⊃ q: (0, i). In these interpretations
also, p ⊃ q is undesignated, so the conjunct, i.e. the premise, is undesignated.

There is no interpretation where the conclusion is undesignated, and premise
designated, therefore the inference is valid.

(4) (p ⊃ q) ∧ (r ⊃ s) �LP (p ⊃ s) ∨ (r ⊃ q)

Suppose the conclusion to be undesignated. Then it takes the value 0.

If the conclusion (p ⊃ s) ∨ (r ⊃ q) takes the value 0, then both p ⊃ s and
r ⊃ q take the value 0. Looking at the truth-table for ⊃ we can see that this
only happens in the classical case. Thus p and r take 1, s and q take 0. But
then p ⊃ q takes 0, and the conjunct takes 0: the premise is undesignated.

There is no interpretation where the conclusion is undesignated, and premise
designated, therefore the inference is valid.

(4) (p ⊃ q) ∧ (r ⊃ s) �RM3
(p ⊃ s) ∨ (r ⊃ q)

Suppose the conclusion to be undesignated. Then it takes the value 0.

If the conclusion (p ⊃ s) ∨ (r ⊃ q) takes the value 0, then both p ⊃ s and
r ⊃ q take the value 0. Looking at the truth-table for ⊃RM3

we can see that
there are three possibilities for each conditional: (1, i), (1, 0), and (i, 0). The
nine combinations are listed below.

p ⊃ s r ⊃ q

1 i 1 i

1 i 1 0

1 i i 0

1 0 1 i

1 0 1 0

1 0 i 0

i 0 1 i

i 0 1 0

i 0 i 0

Looking at the bolded columns for p and q, we can see that on any of these
interpretations (except line 7), p ⊃ q comes out as i or 0, i.e. undesignated.
Thus the conjunct does also: the premise is undesignated. On line 7, r ⊃ s is
undesignated, so again the premise is undesignated.
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(5) ¬(p ⊃ q) �K3
p

Suppose the premise is designated. Then ¬(p ⊃ q) takes the value 1. Then
p ⊃ q takes 0. This only happens in the classical case, where p takes 1, and q

takes 0. But since p takes 1, the conclusion is designated.

(5) ¬(p ⊃ q) � L3

p

Suppose the premise is designated. Then ¬(p ⊃ q) takes the value 1. Then
p ⊃ q takes 0. This only happens in the classical case, where p takes 1, and q

takes 0. But since p takes 1, the conclusion is designated.

(5) ¬(p ⊃ q) �LP p

Suppose the conclusion is undesignated. Then p takes the value 0. Then
p ⊃ q takes 1, or i. So the premise ¬(p ⊃ q) takes 0 or i, and is undesignated.

(5) ¬(p ⊃ q) �RM3
p

Suppose the conclusion is undesignated. Then p takes the value 0. Then
p ⊃ q takes 1, or i. So the premise ¬(p ⊃ q) takes 0 or i, and is undesignated.

(6) p ⊃ r �K3
(p ∧ q) ⊃ r

Suppose the conclusion is undesignated. Then (p ∧ q) ⊃ r takes the value 0
or i.

If it takes 0, then p∧q takes 1, and r takes 0. Hence p takes 1, making p ⊃ r

false: the premise is undesignated.

If it takes i, then there are three possibilities: (1, i), (i, i), and (i, 0).

For the first case, p ∧ q is true, so p and q take 1. v(r) = i, so v(p ⊃ r) = i:
the premise is undesignated.

For the second and third case, v(p ∧ q) = i, so one of p and q is i (the other
is i or 1). In either case, the antecedent of the premise is i, and the consequent
is i or 0 respectively. In either case the premise is undesignated.

(6) p ⊃ r � L3

(p ∧ q) ⊃ r

Suppose the conclusion is undesignated. Then (p ∧ q) ⊃ r takes the value 0
or i.

If it takes 0, then p∧q takes 1, and r takes 0. Hence p takes 1, making p ⊃ r

false: the premise is undesignated.
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If it takes i, then there are two possibilities: (1, i) and (i, 0).

For the first case, p ∧ q is true, so p and q take 1. v(r) = i, so v(p ⊃ r) = i:
the premise is undesignated.

For the second case, v(p ∧ q) = i, so one of p and q is i (the other is i or
1). In either case, the antecedent of the premise is i, and the consequent is 0,
so the premise is undesignated.

(6) p ⊃ r �LP (p ∧ q) ⊃ r

Suppose the conclusion is undesignated. Then (p∧ q) ⊃ r takes the value 0.
Accordingly p ∧ q takes 1, and r takes 0. Hence p takes 1, making p ⊃ r false:
the premise is undesignated.

(6) p ⊃ r �RM3
(p ∧ q) ⊃ r

Suppose the conclusion is undesignated. Then (p ∧ q) ⊃ r takes the value
0. Looking at the truth-table for RM3, there are three possibilities, (1, i), (1, 0),
and (i, 0).

v(p ∧ q) = 1, v(r) = i

v(p ∧ q) = 1, so v(p) = 1. Therefore v(p ⊃ r) = 0: the premise is undesig-
nated.

v(p ∧ q) = 1, v(r) = 0

v(p ∧ q) = 1, so v(p) = 1. Therefore v(p ⊃ r) = 0: the premise is undesig-
nated.

v(p ∧ q) = i, v(r) = 0

v(p ∧ q) = i, so v(p) = i or 1. Therefore v(p ⊃ r) = 0: the premise is
undesignated.

(7) p ⊃ q, q ⊃ r �K3
p ⊃ r

Suppose the conclusion is undesignated. Then v(p ⊃ r) = 0, or v(p ⊃ r) = i.

If v(p ⊃ r) = 0, then v(p) = 1, v(r) = 0. If v(q) = 0 then v(p ⊃ q) = 0. If
v(q) = 1 then v(q ⊃ r) = 0. If v(q) = i, then v(p ⊃ q) = i In either case, the
premise is undesignated.
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If v(p ⊃ r) = i then there are three possibilities:(1, i), (i, i), and (i, 0)

v(p) = 1, v(r) = i

If v(q) = 0, then v(p ⊃ q) = 0. If v(q) = 1 then v(q ⊃ r) = i. If v(q) = i,
then v(p ⊃ q) = i In either case, the premise is undesignated.

v(p) = i, v(r) = i

If v(q) = 0, then v(p ⊃ q) = i. If v(q) = 1 then v(q ⊃ r) = i. If v(q) = i,
then v(p ⊃ q) = i In either case, the premise is undesignated.

v(p) = i, v(r) = 0

If v(q) = 0, then v(p ⊃ q) = i. If v(q) = 1 then v(q ⊃ r) = 0. If v(q) = i,
then v(p ⊃ q) = i In either case, the premise is undesignated.

(7) p ⊃ q, q ⊃ r � L3

p ⊃ r

Suppose the conclusion is undesignated. Then v(p ⊃ r) = 0, or v(p ⊃ r) = i.

If v(p ⊃ r) = 0, then v(p) = 1, v(r) = 0. If v(q) = 0 then v(p ⊃ q) = 0. If
v(q) = 1 then v(q ⊃ r) = 0. If v(q) = i, then v(p ⊃ q) = i In either case, the
premise is undesignated.

If v(p ⊃ r) = i then there are two possibilities:(1, i) and (i, 0)

v(p) = 1, v(r) = i

If v(q) = 0, then v(p ⊃ q) = 0. If v(q) = 1 then v(q ⊃ r) = i. If v(q) = i,
then v(p ⊃ q) = i In either case, the premise is undesignated.

v(p) = i, v(r) = 0

If v(q) = 0, then v(p ⊃ q) = i. If v(q) = 1 then v(q ⊃ r) = 0. If v(q) = i,
then v(q ⊃ r) = i In either case, the premise is undesignated.

(7) p ⊃ q, q ⊃ r 2LP p ⊃ r

v(p) = 1, v(r) = 0, v(q) = i. On this valuation, the premises both take i,
and hence are designated, but the conclusion is undesignated, showing that the
inference is invalid.

(7) p ⊃ q, q ⊃ r �RM3
p ⊃ r

Suppose the conclusion is undesignated. Then v(p ⊃ r) = 0.

Looking at the truth-table for ⊃RM3
, there are three possibilities: (1, i), (1, 0),

and (i, 0)
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v(p) = 1, v(r) = i

If v(q) = 0, then v(p ⊃ q) = 0. If v(q) = 1 then v(q ⊃ r) = 0. If v(q) = i,
then v(p ⊃ q) = 0 In either case, the premise is undesignated.

v(p) = 1, v(r) = 0

If v(q) = 0, then v(p ⊃ q) = 0. If v(q) = 1 then v(q ⊃ r) = 0. If v(q) = i,
then v(q ⊃ r) = 0 In either case, the premise is undesignated.

v(p) = i, v(r) = 0

If v(q) = 0, then v(p ⊃ q) = 0. If v(q) = 1 then v(q ⊃ r) = 0. If v(q) = i,
then v(q ⊃ r) = 0 In either case, the premise is undesignated.

(8) p ⊃ q �K3
¬q ⊃ ¬p

Suppose the conclusion is undesignated. Then v(¬q ⊃ ¬p) is either 0 or i.

If v(¬q ⊃ ¬p) = 0, then v(¬q) = 1 and v(¬p) = 0. So v(q) = 0 and v(p) = 1.
But then v(p ⊃ q) = 0.

If v(¬q ⊃ ¬p) = i then there are three possibilities: (1, i), (i, i), and (i, 0)

v(¬q) = 1, v(¬p) = i

v(q) = 0, and v(p) = 1, so v(p ⊃ q) = i; the premise is undesignated.

v(¬q) = i, v(¬p) = i

v(q) = i, and v(p) = i. Thus v(p ⊃ q) = i; the premise is undesignated.

v(¬q) = i, v(¬p) = 0

v(q) = i, and v(p) = 1. Thus v(p ⊃ q) = i; the premise is undesignated.

(8) p ⊃ q � L3

¬q ⊃ ¬p

Suppose the conclusion is undesignated. Then v(¬q ⊃ ¬p) is either 0 or i.

If v(¬q ⊃ ¬p) = 0, then v(¬q) = 1 and v(¬p) = 0. So v(q) = 0 and v(p) = 1.
But then v(p ⊃ q) = 0.

If v(¬q ⊃ ¬p) = i then there are two possibilities: (1, i) and (i, 0)

v(¬q) = 1, v(¬p) = i

v(q) = 0, and v(p) = 1, so v(p ⊃ q) = i; the premise is undesignated.
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v(¬q) = i, v(¬p) = 0

v(q) = i, and v(p) = 1. Thus v(p ⊃ q) = i; the premise is undesignated.

(8) p ⊃ q �LP ¬q ⊃ ¬p

Suppose the conclusion is undesignated. Then v(¬q ⊃ ¬p) = 0.

If v(¬q ⊃ ¬p) = 0, then v(¬q) = 1 and v(¬p) = 0. So v(q) = 0 and v(p) = 1.
But then v(p ⊃ q) = 0; the premise is undesignated.

(8) p ⊃ q �RM3
¬q ⊃ ¬p

Suppose the conclusion is undesignated. Then v(¬q ⊃ ¬p) = 0.

There are three possibilities: (1, i), (1, 0), and (i, 0)

v(¬q) = 1, v(¬p) = i

v(q) = 0 and v(p) = i. So v(p ⊃ q) = 0; the premise is undesignated.

v(¬q) = 1, v(¬p) = 0

v(q) = 0 and v(p) = 1. So v(p ⊃ q) = 0; the premise is undesignated.

v(¬q) = i, v(¬p) = 0

v(q) = i and v(p) = 1. So v(p ⊃ q) = 0; the premise is undesignated.

(9) 2K3
p ⊃ (q ∨ ¬q)

v(p) = 1, v(q) = i — On this interpretation the truth-value of the condi-
tional is i, which is not designated in K3.

(9) 2 L3

p ⊃ (q ∨ ¬q)

v(p) = 1, v(q) = i — On this interpretation the truth-value of the condi-
tional is i, which is not designated in  L3.

(9) �LP p ⊃ (q ∨ ¬q)

Suppose the conclusion is undesignated, then v(q ∨ ¬q) = 0 But the only
way this could come about were if v(q) = 0 and v(¬q) = 0, which cannot be.
Since there is no interpretation showing the conclusion to be undesignated, the
inference is valid.
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(9) 2RM3
p ⊃ (q ∨ ¬q)

v(p) = 1, v(q) = i — On this interpretation the truth-value of the condi-
tional is 0

(10)2K3
(p ∧ ¬p) ⊃ q

v(p) = i, v(q) = 0 — On this interpretation the truth-value of the condi-
tional is i, which is not designated in K3.

(10)2 L3

(p ∧ ¬p) ⊃ q

v(p) = i, v(q) = 0 — On this interpretation the truth-value of the condi-
tional is i, which is not designated in  L3.

(10)�LP (p ∧ ¬p) ⊃ q

Suppose the conclusion is undesignated, then v((p∧¬p) ⊃ q) = 0. Therefore
v(p ∧ ¬p) = 1, which is impossible.

(10)2RM3
(p ∧ ¬p) ⊃ q

v(p) = i, v(q) = 0 — On this interpretation the truth-value of the condi-
tional is 0.

2. Call a many-valued logic in the language of the classical propositional
calculus normal if, amongst its truth values are two, 1 and 0, such that 1 is
designated, 0 is not, and for every truth function corresponding to a connective,
the output for these inputs is the same as the classical output. (K3,  L3, LP and
RM3 are all normal.) Show that every normal many-valued logic is a sub-logic
of classical logic (i.e., that every inference valid in the logic is valid in classical
logic).

Contrapositive proof: Take an inference which is invalid in classical logic:
Σ 2 A. Consider a classical interpretation showing this to be invalid, I. Because
all formulae in Σ and A are truth-functional, and all inputs in classical logic are
1 or 0, there is a normal interpretation IN which agrees with I on its assignment
of truth-values. IN shows Σ 2 A in all normal many-valued logics.

�
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3. Observe that in K3 if an interpretation assigns the value i to a propo-
sitional parameter that occurs in a formula, then it assigns that value to the
formula itself. Infer that there are no logical truths in K3. Are there any logical
truths in  L3?

A logical truth is a sentence that is designated on all interpretations. There
are no such sentences in K3:

As observed in the question, for all formulas, there is a interpretation that
assigns i to all propositional parameters in the formula, and hence assigns the
value to the whole formula. (This can be seen by a quick look at the truth-tables
for K3.) Since i is not designated, all sentences in K3 are undesignated on the
interpretation which assigns i to all parameters. Therefore there are no logical
truths in K3.

There are logical truths in  L3. For instance � L3

A ⊃ A, as can be shown by
a short truth-table:

A A ⊃ A

1 1

i 1

0 1

�

4. Let v1 and v2 be any interpretations of K3 or LP . Write v1 � v2 to mean
that for every propositional parameter p:

if v1(p) = 1, then v2(p) = 1; and if v1(p) = 0, then v2(p) = 0

Show by induction on the way that formulas are constructed, that if v1 � v2,
then the displayed condition is true for all formulas. Does the result hold for
 L3 and RM3?

For both K3 and LP :

The atomic case requires no argument.

¬A

If v1(¬A) = 1, then v1(A) = 0. So v2(A) = 0. But then v2(¬A) = 1

16



A ∧ B

If v1(A ∧ B) = 1, then v1(A) = 1 and v1(B) = 1. So v2(A) = 1 and
v2(B) = 1. But then v2(A ∧ B) = 1.

If v1(A ∧ B) = 0, then v1(A) = 0 or v1(B) = 0. So v2(A) = 0 or v2(B) = 0.
But then v2(A ∧ B) = 0.

A ∨ B

If v1(A ∨ B) = 1, then v1(A) = 1 or v1(B) = 1. So v2(A) = 1 or v2(B) = 1.
But then v2(A ∨ B) = 1.

If v1(A ∨ B) = 0, then v1(A) = 0 and v1(B) = 0. So v2(A) = 0 and
v2(B) = 0. But then v2(A ∨ B) = 0.

A ⊃ B

If v1(A ⊃ B) = 1, then v1(A) = 0 or v1(B) = 1. So v2(A) = 0 and
v2(B) = 1. But then v2(A ⊃ B) = 1.

If v1(A ⊃ B) = 0, then v1(A) = 1 and v1(B) = 0. So v2(A) = 1 or
v2(B) = 0. But then v2(A ⊃ B) = 0.

A ≡ B

If v1(A ≡ B) = 1, then v1(A) = v1(B) = 1 or v1(A) = v1(B) = 0. So
v2(A) = v2(B) = 1 or v2(A) = v2(B) = 0. But then v2(A ≡ B) = 1.

If v1(A ≡ B) = 0, then v1(A) = 1, v1(B) = 0 or v1(A) = 0, v1(B) = 1. So
v2(A) = 1, v2(B) = 0 or v2(A) = 0, v2(B) = 1. But then v2(A ≡ B) = 0.

�

The result does not hold in  L3 or RM3. In both, ⊃ presents an exception:

For  L3:

Let v1(p) = v1(q) = i, and v2(p) = 1, v2(q) = 0. Then v1 � v2, but
v1(p ⊃ q) = 1 and v2(p ⊃ q) = 0.

For RM3

Let v1(p) = 1, v1(q) = i, and v2(p) = 1, v2(q) = 1. Then v1 � v2, but
v1(p ⊃ q) = 0 and v2(p ⊃ q) = 1.

�
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5. By problem 2, if �LP A, then A is a classical logic truth. Use problem 4
to show the converse. (Hint: Suppose that v is an LP interpretation such that
v(A) = 0. Consider the interpretation, v′, which is the same as v except that if
v(p) = i, v′(p) = 0.)

We need to prove that there is no case of a classical logical truth which is
invalid in LP . Converse proof: Suppose that v is an LP interpretation such that
2LP A. Let v′ be any classical interpretation which is obtained by substituting
1 or 0 for every instance of i in v. Then v � v′. By problem 4, this means that
if v(A) = 0, v′(A) = 0. So, v′ is a classical interpretation which shows that 2 A.

�

9. *Fill in the details omitted in 7.11.2.

Lemma: For no n is Dn+1 a logical truth of any modal logic weaker than
Kυ or of intuitionist logic.

I will first show the result for Kυ.

Dn+1 is the disjunction of all sentences of the form �(pi ⊃ pj)∧�(pj ⊃ pi),
where 1 ≤ i < j ≤ n + 1. Since i and j are defined as distinct, there is a Kυ

interpretation with a world where pi is true and pj is false, (or pi is false and
pj is true), for each pair of i and j. This interpretation will make the disjunc-
tion false at every world. To help to visualise this, here is a counter-model for D1

2Kυ �(p1 ⊃ p2) ∧ �(p2 ⊃ p1)

W = {w0, w1}; vw1
(p1) = 1, vw1

(p2) = 0

Clearly the inference is invalid, because w1 of the interpretation shows the
left conjunct to be false.

A similar proof works for intuitionist logic:

Dn+1 is the disjunction of all sentences of the form (pi = pj) ∧ (pj = pi),
where 1 ≤ i < j ≤ n + 1. Since i and j are defined as distinct, we can create
an intuitionist interpretation with a world where pi is false, and pj is true (or
vice versa), for each pair of i and j. However we also need the interpretation to
satisfy the heredity condition. Let worlds which contain pi and pj be wij . And
let w0 be such that no parameters are true at w0, and for all wij , Rw0wij . This
interpretation will make the disjunction false at w0. To help to visualise this,
here is a counter-model for D1:
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2I �(p1 ⊃ p2) ∧ �(p2 ⊃ p1)

W = {w0, w1}; Rw0w0, Rw0w1, Rw1w1; vw1
(p1) = 1, vw1

(p2) = 0

The result has been shown for Kυ and intuitionist logic, therefore it holds
for all weaker logics.

�
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