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1. Check all the details omitted in 7.5.2.

I will first check the table on page 124. For this it will be useful to have a
list of the characteristic features of the logics treated in this chapter:

Ks: » = (1); ¢ thought of as neither true nor false.

~]1 7 o0
111 2 O
vt |1 i g
01 1 1
bLs: o = (1); i thought of as neither true nor false.
f~11 i 0
111 ¢« O
|1 1 4
01 1 1
LP: » = (1, i); i thought of as both true and false.
f~11 i 0
111 ¢« O
1 |1 i g
01 1 1
RMs: o = (1, i); i thought of as both true and false.
fD 1 (3 0
111 0 0
vt |1 % 0
01 1 1




(1) q ':Ks pPogq
Suppose the conclusion is undesignated. Then by the truth table for Dg,,

there are four possibilities for p and ¢: (1,1), (1,0), (4,7), and (7,0). In all cases,
the premise ¢ is undesignated.

() aFg,pDq

Suppose the conclusion is undesignated. Then by the truth table for DL,
there are three possibilities for p and ¢: (1,7), (1,0), and (¢,0). In all cases, the
premise ¢ is undesignated.

(1) gkFLppDyq

Suppose the conclusion is undesignated. Then the truth-value of p O ¢ is 0.
So the truth value of ¢ is 0.

(1) ¢¥rus; D q

In the case where v(p) = 1, and v(q) = 4, the premise is designated and
conclusion undesignated, therefore the inference is invalid.

(2) -p ':Ks pPogq
Suppose the conclusion is undesignated. Then by the truth table for Dg,,

there are four possibilities for p and ¢: (1,4), (1,0), (4,7), and (7,0). In all cases,
the premise —p is undesignated.

(2) kg, pDq

Suppose the conclusion is undesignated. Then by the truth table for DL,
there are three possibilities for p and ¢: (1,4), (1,0), and (i,0). In all cases, the
premise —p is undesignated.

(2) pFLpp Dy

Suppose the conclusion is undesignated. Then the truth-value of p O ¢ is 0.
So the truth value of p is 1, and the truth value of —p is 0.

(2) ¥Ry P D g

In the case where v(p) = i, and v(gq) = 0, the premise is designated and
conclusion undesignated, therefore the inference is invalid.



(3)(pNg) DrFr, (PDq)VI(gDr)

vV (¢gDr)

(pDaq)

(pAg)Dr

q

S

Looking at the bolded columns, we can see that there is no interpretation
where the premise is designated and conclusion undesignated. Therefore the

inference is valid.



B) (pAg)DrF, (PO VI(gDr)

vV _(¢>r)

(pDaq)

(pAg)Dr

q

S

Looking at the bolded columns, we can see that there is no interpretation
where the premise is designated and conclusion undesignated. Therefore the

inference is valid.



B3) (pAg) DrFLp(pDq)V(gDT)

vV (¢gDr)

(pDaq)

(pAg)Dr

q

S

Looking at the bolded columns, we can see that there is no interpretation
where the premise is designated and conclusion undesignated. Therefore the

inference is valid.



(3) (pAg) DrFrRM; PD @)V (gDT)

vV (¢gDr)

(pDaq)

(pAg)Dr

q

Looking at the bolded columns, we can see that there is no interpretation
where the premise is designated and conclusion undesignated. Therefore the

inference is valid.



4) (P2 ) A (r2s)Fry (pDs)V(roq)

Suppose the conclusion is undesignated. Then it takes either the value 0 or
the value 1.

If the truth-value of the conclusion (p D s) V (r D ¢) is 0, then the truth
value of both p D s and r D ¢ is also 0. Looking at the truth-table for D, we
can see that this only happens when, as in the classical case, the antecedent is
true, and consequent false. Thus p and r take 1, s and ¢ take 0. But then the
truth value of p D ¢ is 0, and the conjunct (p D ¢) A (r D s) is also: the premise
is undesignated.

If the conclusion takes the value i, looking at the truth-table for V, we can
see there are three possibilities: (i,14), (0,4), or (i,0).

‘v(p)s)zi,v(r)q)zi‘

By the truth-table for Dg,, there are three possibilities for each conditional:
(1,4), (¢,7), and (4,0). The nine combinations are listed below.

p D s r DO q
1 i1 i
1 T i
1 T 0
i T 1 i
i T 0
i 0 1 i
i 0 14 i
i 0 4 0

Looking at the bolded columns for p and ¢, we can see that on any of these
interpretations, p D ¢ will come out as ¢ or 0, i.e. undesignated. Thus the
conjunct will also: the premise is undesignated on all these interpretations.

‘v(p)s)z(),v(rjq):i‘

v(p) = 1,v(s) = 0. There are three possibilities for r and ¢: (1,7), (4,1%),
and (¢,0). Thus there are three possibilities for p D ¢, (4,4,0) respectively. In
these interpretations also, p D ¢ is undesignated, so the conjunctive premise, is
undesignated.



‘v(p)s)zi,v(p)s)zO‘

v(r) =1, v(q) = 0. There are three possibilities for p and s: (1,1), (4,4), and
(7,0).Thus there are three possibilities for p D ¢, (0,4,4) respectively. In these
interpretations also, p D ¢ is undesignated, so the conjunct, i.e. the premise, is
undesignated.

There is no interpretation where the conclusion is undesignated, and premise
designated, therefore the inference is valid.

(4) (pD>a)A(r>s)Fp, (pDs)VI(rodq)

Suppose the conclusion is undesignated. Then it takes either the value 0 or
the value 1.

If the truth-value of the conclusion (p D s) V (r D ¢) is 0, then both p D s
and r D ¢ are also 0. Looking at the truth-table for Dy, We can see that this
only happens when, as in the classical case, the antecedent is true, and conse-
quent false. Thus p and r take 1, s and ¢ take 0. But then the truth value of
p D qis 0, and the conjunct (p D ¢)A(r D s) is also: the premise is undesignated.

If the conclusion takes the value i, looking at the truth-table for V, we can
see there are three possibilities: (i,14), (0,1), or (i,0).

‘v(st):i,v(qu):i‘

By the truth-table for OL, there are two possibilities for each conditional:
(1,4) and (7,0). The four combinations are listed below.

p DO s r DO q
1 i1 i
1 T 0
i 1 i
i 0 4 0

Looking at the bolded columns for p and ¢, we can see that on any of these
interpretations, p D ¢ will come out as ¢ or 0, i.e. undesignated. Thus the
conjunct will also: the premise is undesignated.

‘v(p)s):O,v(qu):i‘

v(p) = 1,v(s) = 0. There are two possibilities for r and ¢: (1,¢) and (3,0).
Thus there are two possibilities for p D ¢: (4,0). p D ¢ is undesignated, so the
premise, is undesignated.



‘v(p)s)zi,v(p)s)zO‘

v(r) = 1, v(q) = 0. There are two possibilities for p and s: (1,4) and
(7,0).Thus there are two possibilities for p D ¢: (0,7). In these interpretations
also, p D ¢ is undesignated, so the conjunct, i.e. the premise, is undesignated.

There is no interpretation where the conclusion is undesignated, and premise
designated, therefore the inference is valid.

4) (PO A(rDs)Frp(pDs)V(roq)

Suppose the conclusion to be undesignated. Then it takes the value 0.

If the conclusion (p D s) V (r D ¢) takes the value 0, then both p D s and
r D q take the value 0. Looking at the truth-table for O we can see that this
only happens in the classical case. Thus p and r take 1, s and ¢ take 0. But

then p D ¢ takes 0, and the conjunct takes 0: the premise is undesignated.

There is no interpretation where the conclusion is undesignated, and premise
designated, therefore the inference is valid.

4) (P2 A (r>s)Fru, (PO s)V(rDa)

Suppose the conclusion to be undesignated. Then it takes the value 0.

If the conclusion (p D s) V (r D ¢) takes the value 0, then both p D s and
r O ¢ take the value 0. Looking at the truth-table for Dpras, we can see that

there are three possibilities for each conditional: (1,%),(1,0), and (¢,0). The
nine combinations are listed below.

D D

A N e e N
T e Nl B

OO0 OO O = ==,
O O = OO = OO0 =K

Looking at the bolded columns for p and ¢, we can see that on any of these
interpretations (except line 7), p D ¢ comes out as ¢ or 0, i.e. undesignated.
Thus the conjunct does also: the premise is undesignated. On line 7, r D s is
undesignated, so again the premise is undesignated.



(5) "(pDq Fr,p

Suppose the premise is designated. Then —(p D ¢) takes the value 1. Then
p D q takes 0. This only happens in the classical case, where p takes 1, and ¢
takes 0. But since p takes 1, the conclusion is designated.

(5) ~(p2>a)Fg, p
Suppose the premise is designated. Then —(p D ¢) takes the value 1. Then

p D q takes 0. This only happens in the classical case, where p takes 1, and ¢
takes 0. But since p takes 1, the conclusion is designated.

(5) =(pDq)Frpp

Suppose the conclusion is undesignated. Then p takes the value 0. Then
p D q takes 1, or i. So the premise =(p D ¢) takes 0 or i, and is undesignated.

(5) =(p D q) Frums P

Suppose the conclusion is undesignated. Then p takes the value 0. Then
p D q takes 1, or i. So the premise =(p D ¢) takes 0 or ¢, and is undesignated.

6)pDrEk, (PAg) D

Suppose the conclusion is undesignated. Then (p A ¢) D r takes the value 0
or 4.

If it takes 0, then p A ¢ takes 1, and r takes 0. Hence p takes 1, making p D r
false: the premise is undesignated.

If it takes 7, then there are three possibilities: (1,%), (4,7), and (4,0).

For the first case, p A ¢ is true, so p and ¢ take 1. v(r) =14, so v(p Dr) =1i:
the premise is undesignated.

For the second and third case, v(p A ¢) = 4, so one of p and ¢ is ¢ (the other

is ¢ or 1). In either case, the antecedent of the premise is i, and the consequent
is 7 or 0 respectively. In either case the premise is undesignated.

6)porky, (pAgDr

Suppose the conclusion is undesignated. Then (p A ¢) D r takes the value 0
or 1.

If it takes 0, then p A ¢ takes 1, and r takes 0. Hence p takes 1, making p D r
false: the premise is undesignated.

10



If it takes 7, then there are two possibilities: (1,4) and (i,0).

For the first case, p A ¢ is true, so p and ¢ take 1. v(r) =4, sov(p D7) =1:
the premise is undesignated.

For the second case, v(p A q) = 4, so one of p and ¢ is ¢ (the other is i or
1). In either case, the antecedent of the premise is i, and the consequent is 0,
so the premise is undesignated.

6)pD>rELp(pAg) D1
Suppose the conclusion is undesignated. Then (p A ¢) D r takes the value 0.

Accordingly p A q takes 1, and r takes 0. Hence p takes 1, making p O r false:
the premise is undesignated.

(6) pDrErM; DAG) D

Suppose the conclusion is undesignated. Then (p A ¢) D r takes the value
0. Looking at the truth-table for RMj, there are three possibilities, (1, 1), (1,0),
and (7,0).

[0 A g) =1,0(r) =]
v(p Aq) =1, so v(p) = 1. Therefore v(p D r) = 0: the premise is undesig-
nated.

[v(p A q) = 1,0(r) = 0]
v(p Aq) =1, so v(p) = 1. Therefore v(p D r) = 0: the premise is undesig-
nated.

[v(p A q) =i, v(r) = 0]
v(p Aq) = i, so v(p) =i or 1. Therefore v(p D r) = 0: the premise is
undesignated.

(MpDggDrErg,pDr
Suppose the conclusion is undesignated. Then v(p D7) =0, or v(p D r) = i.
If v(p D r) =0, then v(p) ,u(r) =0. If v(gq) = 0 then v(p D q) = 0. If

=1,v
v(g) = 1 then v(q D r) = 0. If v(q) = 4, then v(p D ¢q) =i In either case, the
premise is undesignated.

11



If v(p D r) = i then there are three possibilities:(1,14), (¢,7), and (4,0)

[0(p) =1,0(r) =i
If v(g) =0, then v(p D q) =0. If v(qg) = 1 then v(qg D r) =1i. If v(q) =1,
then v(p D ¢) =i In either case, the premise is undesignated.

lv(p) =1, <>—d
If v(¢) = 0, then v(p D q) = 4. If v(q) = 1 then v(g D r) = i. If v(q) =1,
then v(p D q) = ¢ In either case, the premise is undesignated.

[ 0(p) =i, 0(r) =0
If v(g) = 0, then v(p D q) =i. If v(g) = 1 then v(g D r) = 0. If v(q) = 1,
then v(p D q) =i In either case, the premise is undesignated.

(Mp>¢q>DrFy, pOr

Suppose the conclusion is undesignated. Then v(p D r) =0, or v(p D 1) =i.

If w(p D r) =0, then v(p) = 1,v(r ) =0. If v(g) =0 then v(p D ¢q) =0. If
v(g) = 1 then v(q D r) = 0. If v(q) = 4, then v(p D ¢q) =i In either case, the

premise is undesignated.

If v(p D r) =i then there are two possibilities:(1,7) and (4,0)

[0(p) =1,0(r) =i
If v(q) = 0, then v(p D q) = 0. If v(q) = 1 then v(¢ D r) =1i. If v(q) =1,
then v(p D ¢) = i In either case, the premise is undesignated.

[0(p) =i,0(r) =0
If v(g) =0, then v(p D q) =i. If v(g) =1 then v(g D r) = 0. If v(q) = 1,
then v(g D r) =i In either case, the premise is undesignated.

(Mp>agdr¥rppOr

v(p) = 1,v(r) = 0,v(¢) = 4. On this valuation, the premises both take i,
and hence are designated, but the conclusion is undesignated, showing that the
inference is invalid.

(MpDqgqDrErm,pDrT

Suppose the conclusion is undesignated. Then v(p D r) = 0.

Looking at the truth-table for D gaz,, there are three possibilities: (1,4), (1,0),
and (4,0)

12



[0(p) = 1,0(r) = |
If v(g) =0, then v(p D ¢) = 0. If v(q) =1 then v(g D r) =0. If v(q) = 1,
then v(p D ¢) = 0 In either case, the premise is undesignated.

[v(p) = 1,0(r) = 0|
If v(g) =0, then v(p D ¢) = 0. If v(q) =1 then v(g D r) =0. If v(q) = 1,
then v(g D r) = 0 In either case, the premise is undesignated.

[v(p) =i.v(r) = 0]
If v(q) = 0, then v(p D q) = 0. If v(q) =1 then v(g D r) =0. If v(q) = 1,
then v(¢ D r) = 0 In either case, the premise is undesignated.

(8) pDqFK, "¢ D —p
Suppose the conclusion is undesignated. Then v(—¢g D —p) is either 0 or i.

If v(—g D —p) = 0, then v(—¢) = 1 and v(—p) = 0. So v(g) = 0 and v(p) = 1.
But then v(p D q) = 0.

If v(—g D —p) = i then there are three possibilities: (1,1), (i,7), and (¢, 0)

| v(~g) = 1,0(-p) = i
v(g) =0, and v(p) = 1, so v(p D q) = i; the premise is undesignated.

[v(~g) = i,0(-p) = i
v(q) =i, and v(p) = i. Thus v(p D ¢q) = i; the premise is undesignated.

| v(~g) = i,0(=p) =0
v(q) = i, and v(p) = 1. Thus v(p D q) = i; the premise is undesignated.

(8)pDgFg, ~a>p
Suppose the conclusion is undesignated. Then v(—g D —p) is either 0 or i.

If v(—g D —p) = 0, then v(—~g) = 1 and v(—p) = 0. So v(g) = 0 and v(p) = 1.
But then v(p D q) = 0.

If v(—¢ D —p) = i then there are two possibilities: (1,4) and (i, 0)

| v(~g) = 1,0(-p) = i
v(q) = 0, and v(p) = 1, so v(p D ¢) = 4; the premise is undesignated.

13



| v(~q) =i,0(=p) =0
v(q) =i, and v(p) = 1. Thus v(p D ¢) = 4; the premise is undesignated.

(8)pDqFLp—~q¢Dp
Suppose the conclusion is undesignated. Then v(—¢ D —p) = 0.

If v(—g D —p) = 0, then v(—¢) = 1 and v(—p) = 0. So v(g) = 0 and v(p) = 1.
But then v(p D ¢) = 0; the premise is undesignated.

(8) p D qFrM; ~¢ D —p
Suppose the conclusion is undesignated. Then v(—¢g D —p) = 0.

There are three possibilities: (1,4), (1,0), and (4,0)
v(g) = 0 and v(p) =4. So v(p D ¢q) = 0; the premise is undesignated.

| v(=g) = 1,0(-p) = 0
v(g) = 0 and v(p) = 1. So v(p D ¢) = 0; the premise is undesignated.

| v(~g) = i,0(=p) =0
v(q) =i and v(p) = 1. So v(p D ¢q) = 0; the premise is undesignated.

(9) Fry p D (qV —9q)

v(p) = 1,v(¢) = ¢ — On this interpretation the truth-value of the condi-
tional is ¢, which is not designated in Kj.

(9) #y, > (¢V—aq)

v(p) = 1,v(q) = ¢ — On this interpretation the truth-value of the condi-
tional is ¢, which is not designated in L.

(9) FLpp D (¢V—q)
Suppose the conclusion is undesignated, then v(¢ V —¢) = 0 But the only
way this could come about were if v(¢) = 0 and v(—¢) = 0, which cannot be.

Since there is no interpretation showing the conclusion to be undesignated, the
inference is valid.
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(9) Fray p D (¢ V —q)

v(p) = 1,v(q¢) = i« — On this interpretation the truth-value of the condi-
tional is 0

(10)Fr, (PA—p) D g

v(p) = 7,v(q) = 0 — On this interpretation the truth-value of the condi-
tional is ¢, which is not designated in Kj.

(10)#g, (PA-p) D g

v(p) = i,v(qg) = 0 — On this interpretation the truth-value of the condi-
tional is ¢, which is not designated in L.

(10)kLp (pA—p) D q

Suppose the conclusion is undesignated, then v((pA—p) D q) = 0. Therefore
v(p A —p) = 1, which is impossible.

(10)¥rars (PA—p) D g

v(p) = i,v(qg) = 0 — On this interpretation the truth-value of the condi-
tional is 0.

2. Call a many-valued logic in the language of the classical propositional
calculus normal if, amongst its truth values are two, 1 and 0, such that 1 is
designated, 0 is not, and for every truth function corresponding to a connective,
the output for these inputs is the same as the classical output. (K3, L3, LP and
RMsj are all normal.) Show that every normal many-valued logic is a sub-logic
of classical logic (i.e., that every inference valid in the logic is valid in classical
logic).

Contrapositive proof: Take an inference which is invalid in classical logic:
3 ¥ A. Consider a classical interpretation showing this to be invalid, I. Because
all formulae in ¥ and A are truth-functional, and all inputs in classical logic are
1 or 0, there is a normal interpretation IV which agrees with I on its assignment
of truth-values. IV shows ¥ ¥ A in all normal many-valued logics.
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3. Observe that in K3 if an interpretation assigns the value i to a propo-
sitional parameter that occurs in a formula, then it assigns that value to the
formula itself. Infer that there are no logical truths in K3. Are there any logical
truths in E3?

A logical truth is a sentence that is designated on all interpretations. There
are no such sentences in Kj:

As observed in the question, for all formulas, there is a interpretation that
assigns 4 to all propositional parameters in the formula, and hence assigns the
value to the whole formula. (This can be seen by a quick look at the truth-tables
for K3.) Since i is not designated, all sentences in K3 are undesignated on the
interpretation which assigns i to all parameters. Therefore there are no logical
truths in K3.

There are logical truths in Ls. For instance |=L3 A D A, as can be shown by
a short truth-table:

A|ADA
1 1
1 1
0 1

4. Let v; and v2 be any interpretations of K3 or LP. Write v; < vy to mean
that for every propositional parameter p:

if v1(p) = 1, then va(p) = 1; and if v1(p) = 0, then va(p) = 0
Show by induction on the way that formulas are constructed, that if v; < vs,
then the displayed condition is true for all formulas. Does the result hold for
L3 and RM3?
For both K3 and LP:

The atomic case requires no argument.

If v1(=A) = 1, then v1(A) = 0. So v2(A) = 0. But then ve(-A4) =1
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If vu(AA B) =1, then v1(A) = 1 and v1(B) = 1. So v3(4) = 1 and
ve(B) = 1. But then va(A A B) = 1.

If v1(AAB) =0, then v1(A) =0 or v1(B) = 0. So v2(A) =0 or vo(B) = 0.
But then vo(A A B) = 0.

If v1(AV B) =1, then v1(A) =1 or v1(B) = 1. So va(A) =1 or v2(B) = 1.
But then vy(AV B) = 1.

If vu(AV B) = 0, then v1(A) = 0 and v1(B) = 0. So v3(4) = 0 and
v2(B) = 0. But then v2(AV B) = 0.

If vu(A D B) = 1, then v1(A) = 0 or v1(B) = 1. So v2(A) = 0 and
v2(B) = 1. But then va(A D B) = 1.

If v1(A D B) = 0, then v;(A) = 1 and v1(B) = 0. So va(4) =1 or
v2(B) = 0. But then v2(A D B) = 0.

If v1(A = B) = 1, then v1(4) = v1(B) = 1 or v1(4) = v1(B) = 0. So
v2(A) = v2(B) =1 or va(A) = vo(B) = 0. But then v2(A = B) = 1.

If vi(A=B) =0, then v;(A) = 1,v1(B) =0 or v1(4) = 0,v1(B) = 1. So
v2(A) = 1,v3(B) = 0 or v2(A) = 0,v2(B) = 1. But then v3(4 = B) = 0.

|
The result does not hold in L3 or RMjs. In both, D presents an exception:
For Lg:

Let v1(p) = vi(q) = 4, and va(p) = 1,v2(¢) = 0. Then vy =< wy, but
vi(p D ¢q)=1and va(p D¢q) =0.

For RMj;

Let v1(p) = 1,v1(q) = 4, and v2(p) = 1l,v2(q) = 1. Then v; =< w9, but
v1(p D ¢q) =0and va(p D q) = 1.
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5. By problem 2, if Erp A, then A is a classical logic truth. Use problem 4
to show the converse. (Hint: Suppose that v is an LP interpretation such that
v(A) = 0. Consider the interpretation, v’, which is the same as v except that if

v(p) =i, v'(p) =0.)

We need to prove that there is no case of a classical logical truth which is
invalid in LP. Converse proof: Suppose that v is an LP interpretation such that
Frp A. Let v/ be any classical interpretation which is obtained by substituting
1 or 0 for every instance of ¢ in v. Then v < v’. By problem 4, this means that
if v(A) =0, v'(4) = 0. So, v’ is a classical interpretation which shows that ¥ A.

||
9. *Fill in the details omitted in 7.11.2.

Lemma: For no n is D,y1 a logical truth of any modal logic weaker than
Kwv or of intuitionist logic.

I will first show the result for Kv.

D, 11 is the disjunction of all sentences of the form O(p; D p;) AO(p; D pi),
where 1 < i < 7 < n+ 1. Since ¢ and j are defined as distinct, there is a Kv
interpretation with a world where p; is true and p; is false, (or p; is false and
pj is true), for each pair of ¢ and j. This interpretation will make the disjunc-
tion false at every world. To help to visualise this, here is a counter-model for D,

Fro O(p1 D p2) AO(p2 D p1)
W = {wO)wl};vwl (pl) =1, v, (pQ) =0

Clearly the inference is invalid, because w; of the interpretation shows the
left conjunct to be false.

A similar proof works for intuitionist logic:

Dy, 11 is the disjunction of all sentences of the form (p; 3 p;) A (p; 3 pi)s
where 1 < i < j < n+ 1. Since 7 and j are defined as distinct, we can create
an intuitionist interpretation with a world where p; is false, and p; is true (or
vice versa), for each pair of i and j. However we also need the interpretation to
satisfy the heredity condition. Let worlds which contain p; and p; be w;;. And
let wo be such that no parameters are true at wg, and for all w;;, Rwow;;. This
interpretation will make the disjunction false at wgy. To help to visualise this,
here is a counter-model for D;:
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FrO(p1 D p2) AO(p2 D p1)
W = {wo, w1 }; Rwowo, Rwowy, Rwiwy; vy, (p1) = 1,04, (p2) =0

The result has been shown for Kv and intuitionist logic, therefore it holds
for all weaker logics.

19



