1. Complete the details left open in 5.2.1, 5.4.3, 5.5.4, 5.5.8, 5.6.11, 5.7.2, 5.7.6 and 5.8.8.

 $5.2.1\colon$ Check that Antecedent strengthening, Transitivity, and Contraposition are valid in classical logic.

 $A \supset B \vdash (A \land C) \supset B$ $A \supset B$ $\neg((A \land C) \supset B) \\ A \land C$ $\neg B$ AC $\neg A \quad B$ \otimes \otimes $A\supset B, B\supset C\vdash A\supset C$ $A\supset B$ $B\supset C$ $\neg (A \supset C)$ A $\neg C$ $\neg A$ È \otimes $\neg B$ C \otimes \otimes $A\supset B, C\vdash \neg B\supset \neg A$

$$\begin{array}{c} A \supset B \\ \neg (\neg B \supset \neg A) \\ \neg B \\ \neg \neg A \\ A \\ \frown A \\ \otimes \\ \otimes \end{array}$$

5.4.3 Check that the second and third arguments of 5.2.2 are invalid.

 $p>q,q>r \not\vdash_C p>r$

$$\begin{array}{c} p > q, 0 \\ q > r, 0 \\ \neg (p > r), 0 \\ 0 r_p 1 \\ \neg r, 1 \\ q, 1 \end{array}$$

Counter-model such that:

$$W = \{w_0, w_1\}; w_0 R_p w_1; v_{w_1}(q) = 1, v_{w_1}(r) = 0$$

This can be represented in the following picture:

$$\begin{array}{cccc} w_0 & \stackrel{p}{\longrightarrow} & w_1 \\ & & q, \neg r \end{array}$$

 $p > q \nvDash_C \neg q > \neg p$

$$p > q, 0$$

$$\neg (\neg q > \neg p), 0$$

$$0r_{\neg q}1$$

$$\neg \neg p, 1$$

$$p, 1$$

Counter-model such that:

$$W = \{w_0, w_1\}; w_0 R_{\neg q} w_1; v_{w_1}(p) = 1$$

$$\begin{array}{ccc} w_0 & \stackrel{\neg q}{\longrightarrow} & w_1 \\ & & p \end{array}$$

5.5.4: Check that modus ponens for > fails in C.

 $p,p>q \not\vdash_C q$

$$p, 0$$

$$p > q, 0$$

$$\neg q, 0$$

Counter-model such that:

$$W = \{w_0\}; v_{w_0}(p) = 1, v_{w_0}(q) = 0$$

This can be represented in the following picture:

$$w_0$$

 $p, \neg q$

5.5.8 Construct a simple interpretation showing that $p > r \nvDash_{C^+} p > (r \land q)$.

$$\begin{array}{c} \stackrel{p}{\overset{\frown}{w_0}} \\ p, r, \neg q \end{array}$$

p > r is true at w_0 : w_0 is the only p world, and r is true there. $p > (r \land q)$ is false at w_0 , because w_0 is a p world, and $\neg q$, and hence $r \land q$ is false there. This countermodel satisfies conditions (1) and (2), because at all p-worlds p is true, and vice versa.

Counter-model from left-most open branch such that:

5.6.11: Check that $p > q, q > p \nvDash_{C^+} (p > r) \equiv (q > r)$

$$W = \{w_0, w_1\}$$

$$\begin{split} &w_0 R_p w_0, w_0 R_q w_0, w_1 R_p w_1, w_1 R_q w_1, w_0 R_q w_1; \text{ for all other } A, f_A(w) = [A] \\ &v_{w_0}(p) = 1, v_{w_0}(q) = 1, v_{w_0}(r) = 1, v_{w_1}(p) = 1, v_{w_1}(q) = 1, v_{w_1}(r) = 0 \\ &\text{This can be represented in the following picture:} \end{split}$$

$$\begin{array}{cccc} \stackrel{p,q}{\overset{}{\underset{\scriptstyle 0}{\scriptstyle 0}}} & \stackrel{q}{\longrightarrow} & \stackrel{p,q}{\overset{}{\underset{\scriptstyle 0}{\scriptstyle 0}}}_{1} \\ p,q,r & p,q\neg r \end{array}$$

5.7.2 Show that *Conditional Excluded Middle* is not valid in S.

 $\nvDash_S (p > q) \lor (p > \neg q)$

Since there is no tableaux system for S, I will simply draw a similarity sphere diagram:

In the above, there are two most similar worlds to w_0 where p is true. w_2 makes q false, meaning that p > q is false at w_0 , and w_1 makes q true, meaning $p > \neg q$ is false at w_0 . Thus the disjunction is false at w_0 , and the inference is invalid in S.

5.7.6 Check that $A \wedge B \vDash A > B$ does not hold in S.

 $p \wedge q \nvDash_S p > q$

Since there is no tableaux system for S, I will draw a similarity sphere diagram directly:

In the above, $p \wedge q$ is true at w_0 . However, in S, w_0 is not guaranteed to be a unique world most similar to itself. Perhaps counter-intuitively, w_1 is a world equally similar to w_0 , except that q is false there. Therefore p > q, is false at w_0 and the inference is invalid. 5.8.8 Check that $\Box B \vDash A > B$, $\Box \neg A \vDash A > B$ and $\vDash (A \land \neg A) > B$ in C^+

 $\Box B \vdash_{C^+} A > B$

$$\begin{array}{c} \Box B, 0 \\ \neg (A > B), 0 \\ 0 r_A 1 \\ A, 1 \\ \neg B, 1 \\ B, 1 \\ \otimes \end{array}$$

 $\Box \neg A \vdash_{C^+} A > B$

$$\begin{array}{c} \Box \neg A, 0 \\ \neg (A > B), 0 \\ 0 r_A 1 \\ A, 1 \\ \neg B, 1 \\ \neg A, 1 \\ \otimes \end{array}$$

 $\vdash_{C^+} (A \land \neg A) > B$

$$\begin{array}{c} \neg (A \wedge \neg A) > B, 0 \\ 0r_{A \wedge \neg A} 1 \\ A \wedge \neg A, 1 \\ \neg B, 1 \\ A, 1 \\ \neg A, 1 \\ \otimes \end{array}$$

2. Show that the following are true in C:

$$\begin{array}{l} (\mathbf{a}) \ \Box(A \equiv B) \vdash (C > A) \equiv (C > B) \\ & \Box(A \equiv B), 0 \\ \neg ((C > A) \equiv (C > B)), 0 \\ \hline (C > B), 0 & (C > B), 0 \\ \neg (C > B), 0 & (C > B), 0 \\ \neg (C > B), 0 & (C > B), 0 \\ \neg (C > B), 0 & (C > B), 0 \\ \neg (C > B), 1 & \neg A, 1 \\ A, 1 & B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ A \equiv B, 1 & A \equiv B, 1 \\ B, 1 & -A, 1 \\ B, 1 & 0 \\ A > B, 0 \\ A > B, 0 \\ A > C, 0 \\ 0 \\ A > B, 0 \\ A > C, 0 \\ 0 \\ A > B, 1 \\ C, 1 \\ \neg B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ C, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ C, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ C, 1 \\ \neg B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ C, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ C, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ \neg (B \land C), 1 \\ B, 1 \\ \neg (B \land C), 1 \\ \neg$$

(d)
$$A > (B \supset C) \vdash (A > B) \supset (A > C)$$

$$\begin{array}{c} A > (B \supset C), 0 \\ \neg((A > B) \supset (A > C)), 0 \\ A > B, 0 \\ \neg(A > C), 0 \\ 0 \\ r_A 1 \\ \neg C, 1 \\ B, 1 \\ B \supset C, 1 \\ \neg B, 1 \\ C \\ \otimes \\ \end{array}$$

$$(e) \vdash A > (B \lor \neg B)$$

$$\begin{array}{c} \neg(A > (B \lor \neg B)), 0 \\ 0 \\ 0 \\ r_A 1 \\ \neg(B \lor \neg B), 1 \\ \neg B, 1 \\ \neg B, 1 \\ \otimes \\ \end{array}$$

3. Show that the following are false in C, but true in C^+ . Specify a C counter-model.

$$(a) ⊢ p > p$$

⊭_C p > p

$$\neg (p > p), 0$$
$$0r_p 1$$
$$\neg p, 1$$

Countermodel such that:

$$W = \{w_0, w_1\}; w_0 R_p w_1; v_{w_1}(p) = 0$$

 $\vdash_{C^+} p > p$

$$\begin{array}{c} \neg(p > p), 0 \\ 0 r_p 1 \\ p, 1 \\ \neg p, 1 \\ \otimes \end{array}$$

(b) $p, p > q \vdash q$ $\nvdash_C p, p > q \vdash q$

$$\begin{array}{c} p, 0\\ p > q, 0\\ \neg q, 0 \end{array}$$

Countermodel such that:

$$W = \{w_0\}; v_{w_0}(p) = 1, v_{w_0}(q) = 0$$

$$\vdash_{C^+} p, p > q \vdash q$$

$$p, 0$$

$$p > q, 0$$

$$\neg q, 0$$

$$\begin{array}{c|c} p, 0 & \neg p, 0 \\ 0r_p 0 & \otimes \\ q, 0 \\ \otimes \end{array}$$

(c) $p \rightarrow q \vdash p > q$

 $p {\rightarrow} q \not\vdash_C p > q$

 $\Box(p\supset q) \nvDash_C p > q$

$$\begin{array}{c} \Box(p\supset q), 0\\ \neg(p>q), 0\\ 0r_p 1\\ \neg q, 1\\ p\supset q, 1\\ \overbrace{\neg p, 1 q, 1}{\otimes} \end{array}$$

Countermodel such that:

$$W = \{w_0, w_1\}; w_0 R_p w_1; v_{w_1}(p) = 0, v_{w_1}(q) = 0$$

 $p \rightarrow \exists q \vdash_{C^{+}} p > q$ $\Box(p \supset q) \vdash_{C^{+}} p > q$ $\Box(p \supset q), 0$ $\neg(p > q), 0$ $0r_{p}1$ p, 1 $\neg q, 1$ $p \supset q, 1$ $\neg p, 1 \rightarrow q, 1$ $\bigotimes \qquad \bigotimes$ $(d) p \land \neg q \vdash \neg(p > q)$ $p \land \neg q \nvDash_{C} \neg(p > q)$ $p \land \neg q, 0$ $\neg \neg(p > q), 0$ p > q, 0 p, 0 $\neg q, 0$

Countermodel such that:

$$W = \{w_0\}; v_{w_0}(p) = 1, v_{w_0}(q) = 0$$
$$p \land \neg q \vdash_{C^+} \neg (p > q)$$

$$\begin{array}{c} p \wedge \neg q, 0 \\ \neg \neg (p > q), 0 \\ p > q, 0 \\ p, 0 \\ \neg q, 0 \\ \hline p, 0 \\ \neg p, 0 \\ \bigcirc p, 0 \\ \neg p, 0 \\ \otimes \\ q, 0 \\ \otimes \end{array}$$

4. Show that the following are false in C^+ . Specify a counter-model, either by constructing a tableau, or directly.

Countermodel from the left-most open branch such that:

$$W = \{w_0, w_1\}$$

$$w_0 R_{p \wedge r} w_1, w_1 R_p w_1, w_1 R_{p \wedge r} w_1;$$
 for all other $A, f_A(w) = [A]$

$$v_{w_0}(p) = 0, v_{w_1}(p) = 1, v_{w_1}(q) = 0, v_{w_1}(r) = 1$$

Counter-model from the left-most open branch such that:

$$W = \{w_0, w_1\}$$

$$w_0 R_p w_0, w_0 R_{\neg q} w_1, w_1 R_p w_1, w_1 R_{\neg q} w_1; \text{ for all other } A, f_A(w) = [A]$$

$$v_{w_0}(p) = 1, v_{w_0}(q) = 0, v_{w_1}(p) = 1, v_{w_1}(q) = 0$$

$$\begin{array}{ccc} p & & p, \neg q \\ \widehat{w_0} & \xrightarrow{\neg q} & \widehat{w_1} \\ p, q & & p, \neg q \end{array}$$

 $p>q,q>r \nvDash_{C^+} p>r$

Countermodel from left-most open branch such that:

$$W = \{w_0, w_1\}$$

 $w_0 R_p w_0, w_0 R_q w_0, w_0 R_p w_1, w_1 R_p w_1, w_1 R_q w_1; \text{ for all other } A, f_A(w) = [A]$ $v_{w_0}(p) = 1, v_{w_0}(q) = 1, v_{w_0}(r) = 1, v_{w_1}(p) = 1, v_{w_1}(q) = 1, v_{w_1}(r) = 0$

$$\begin{array}{ccc} \stackrel{p,q}{\overset{p}{\underset{w_{0}}{\cdots}}} & \stackrel{p}{\underset{w_{1}}{\longrightarrow}} & \stackrel{p,q}{\overset{w_{1}}{\underset{w_{1}}{\cdots}}} \\ p,q,r & p,q,\neg r \end{array}$$

5. Show that the following fail in C, but hold provided we add the condition on f indicated.

$$\begin{array}{l} (\mathbf{a}) \ (p \lor q) > r \vDash (p > r) \land (q > r) \\ f_p(w) \cup f_q(w) \subseteq f_{p \lor q}(w) \\ & (p \lor q) > r \nvDash_C \ (p > r) \land (q > r) \\ & \neg (p \lor q) > r, 0 \\ \neg ((p > r) \land (q > r)), 0 \\ \hline & \neg (p > r), 0 \quad \neg (q > r), 0 \\ & 0r_p 1 \qquad 0r_q 1 \\ \neg r, 1 \qquad \neg r, 1 \end{array}$$

$$\begin{array}{l} (p \lor q) > r \vdash_C \ (p > r) \land (q > r) \\ & \text{with the condition} \\ f_p(w) \cup f_q(w) \subseteq f_{p \lor q}(w) \end{array}$$

Suppose that $(p \lor q) > r$ is true at a world of an interpretation, w. Then $f_{p\lor q} \subseteq [r]$. By the condition, $f_p \subseteq [r]$ and $f_q \subseteq [r]$. So p > r, q > r, and so their conjunction, are true at w.

Although strictly it requires us to show the soundness of the condition before proceeding, this can also be shown using a tableau.

$$\begin{array}{c} (p \lor q) > r, 0 \\ \neg ((p > r) \land (q > r)), 0 \\ \hline \neg (p > r), 0 \quad \neg (q > r), 0 \\ 0r_p 1 \quad 0r_q 1 \\ \neg r, 1 \quad \neg r, 1 \\ 0r_{p \lor q} 1 \quad 0r_{p \lor q} 1 \\ r, 1 \quad r, 1 \\ \otimes \qquad \otimes \end{array}$$

(b) $(p > r) \land (q > r) \vDash (p \lor q) > r$ $f_{p\lor q}(w) \subseteq f_p(w) \cup f_q(w)$

$$\begin{split} (p > r) \wedge (q > r) \nvDash_C (p \lor q) > r \\ (p > r) \wedge (q > r), 0 \\ \neg ((p \lor q) > r), 0 \\ p > r, 0 \\ q > r, 0 \\ 0r_{p \lor q} 1 \\ \neg r, 1 \\ \end{split}$$
$$(p > r) \wedge (q > r) \vdash_C (p \lor q) > r \\ \text{with the condition} \\ f_{p \lor q}(w) \subseteq f_p(w) \cup f_q(w) \end{split}$$

Suppose that $(p > r) \land (q > r)$ is true at a world of an interpretation, w. Then $f_p(w) \subseteq [r]$ and $f_q(w) \subseteq [r]$. So, $f_p(w) \cup f_q(w) \subseteq [r]$, and, by the condition $f_{p \lor q}(w) \subseteq [r]$, as required.

Although strictly it requires us to show the soundness of the condition before proceeding, this can also be shown using a tableau.

$$p > q, q > r \vdash_C (p \land q) > r$$

with the condition
If $f_p(w) \subseteq [q]$, then $f_{p \land q}(w) \subseteq f_q(w)$

Assume p > q and q > r are true at a world of an interpretation, w. Then $f_p(w) \subseteq [q]$ and $f_q(w) \subseteq [r]$. By the condition, $f_{p \wedge q}(w) \subseteq f_q(w)$. So, $f_{p \wedge q}(w)$ is contained in [r]. Hence $(p \wedge q) > r$ as required.

Although strictly it requires us to show the soundness of the condition before proceeding, this can also be shown using a tableau.

$$\begin{array}{c} p > q, 0 \\ q > r0 \\ \neg ((p \land q) > r), 0 \\ 0r_{p \land q}1 \\ \neg r, 1 \\ 0r_q1 \\ r, 1 \\ \otimes \end{array}$$

6. Show that the following fail in C^+ , but hold in S:

(a) $\Diamond p \vDash \neg (p > (q \land \neg q))$ $\Diamond p \nvDash_{C^+} \neg (p > (q \land \neg q))$

Counter-model such that:

 $W = \{w_0, w_1\}; w_0 R w_1, w_1 R_p w_1; \text{ for all other } A, f_A(w) = [A]; v_{w_0}(p) = 0, v_{w_1}(p) = 1$

This can be represented in the following picture:

$$w_0 \qquad \stackrel{p}{\widehat{w_1}} \ \neg p \qquad p$$

This is a C^+ model because it satisfies conditions (1) and (2): $f_A(w) \subseteq [A]$ and, if $w \in [A]$, then $w \in f_A(w)$.

 $\Diamond p \vdash_S \neg (p > (q \land \neg q))$

There are no tableaux for S so I will give a direct proof.

Suppose that the premise is true, and the conclusion false. Then at some world, w_0 , $\Diamond p$ and $p > (q \land \neg q)$ are true. By the first of these, there is a world, w, such that $w \notin f_p(w_0)$. By the second, $f_p(w) \subseteq [q \land \neg q]$. Hence, $q \land \neg q$ is true at w, which is impossible.

(b)
$$p > q, \neg (p > \neg r) \vDash (p \land r) > q$$

 $p > q, \neg (p > \neg r) \nvDash_{C^+} (p \land r) > q$

I will simply specify a counter-model:

 $W = \{w_0, w_1, w_2\}$

 $w_0 R_p w_1, w_1 R_p w_1, w_0 R_{p \wedge r} w_2, w_1 R_q w_1, w_1 R_{p \wedge r} 1 w_2 R_p w_2, w_2 R_{p \wedge r} w_2; \text{ for all other } A, f_A(w) = [A]$ $v_{w_0}(p) = 0, v_{w_1}(p) = 1, v_{w_1}(q) = 1, v_{w_1}(r) = 1, v_{w_2}(p) = 1, v_{w_2}(q) = 0, v_{w_2}(r) = 1$

This can be represented in the following picture:

p > q is true at w_0 because at the only *p*-world in relation to w_0, q is true. $\neg(p > \neg r)$ is true at w_0 because at only *p*-world in relation to w_0, r is true. $(p \wedge r) > q$ is false at w_0 because at the only $(p \wedge r)$ -world in relation to w_0, q is false. Therefore the inference is invalid. This is a C^+ model because it satisfies conditions (1) and (2): $f_A(w) \subseteq [A]$ and, if $w \in [A]$, then $w \in f_A(w)$.

$$p > q, \neg (p > \neg r) \vdash_S (p \land r) > q$$

I will show that this is valid in S with a direct demonstration.

Suppose that at some world of some interpretation, w_0 , the premises are true. Then at all the closest worlds where p is true, q is true, and at one of these r is also true. Now, consider the worlds closest to w_0 where $p \wedge r$ is true. There are such things amongst the closest worlds where p is true, and those must be the closest to w_0 . At all of these, q is true. Hence, the conclusion is true.

(c)
$$\Box(p \equiv q) \vDash (p > r) \equiv (q > r)$$

 $\Box(p \equiv q) \nvDash_{C^+} (p > r) \equiv (q > r)$

I will specify a counter-model directly:

$$W = \{w_0, w_1\}$$

$$w_0 R_p w_0, w_0 R_q w_0, w_0 R_q w_1, w_1 R_p w_1, w_1 R_q w_1$$

$$v_{w_0}(p) = 1, v_{w_0}(q) = 1, v_{w_0}(r) = 1, v_{w_1}(p) = 1, v_{w_1}(q) = 1, v_{w_0}(r) = 0$$
for all other $A, f_A(w) = [A]$

This can be represented in the following picture:

$$\begin{array}{ccc} \stackrel{p,q}{\widehat{W_0}} & \stackrel{q}{\longrightarrow} & \stackrel{p,q}{\widehat{W_1}} \\ p,q,r & p,q,\neg r \end{array}$$

At both worlds, the truth value of p and q are the same, so the premise $\Box(p \equiv q)$ is true at w_0 . In w_0 , p > r is true (because w_0 is not p-related to w_1). However, q > r is false, because r is false at w_1 . This model satisfies (1) and (2), and so is a C_+ interpretation.

 $\Box(p \equiv q) \vdash_S (p > r) \equiv (q > r)$

I will show that this is valid in S with a direct demonstration.

If the premise is true, then the truth value of p and q is the same at every world. So $f_p(w) = f_q(w)$. And so $f_p(w) \subseteq [r]$ iff $f_q(w) \subseteq [r]$.

7. By constructing a suitable sphere model, show that the inferences of problem 4 also fail in C_2 . Show that the following is also false in C_2 : $(p \lor q) > r \vDash (p > r) \land (q > r)$.

$$p > q \vDash (p \land r) > q$$

$$p, \stackrel{w_1}{\neg q}, r (p, \stackrel{w_0}{q}, \neg r) S_0$$

$$S_1$$

(a)

 w_0 is the unique closest world at which p is true, and q is true there, so the premise is true. However the closest world at which $p \wedge r$ is true is w_1 , and q is false there, so the conclusion is false. Each of S_0 and $S_1 - S_0$ has only one world in it, so the model is a C_2 interpretation.

 w_1 is the unique closest *p*-world, and *q* is true there, so the premise is true. However the closest $\neg q$ -world is w_0 , and there *p* is true, so the conclusion is false. Each of S_0 and $S_1 - S_0$ has only one world in it, so the model is a C_2 interpretation. (c) $p > q, q > r \vDash p > r$

At the unique closest q-world, w_0 , r is true, therefore the second premise q > r is true at w_0 . At the closest p world, w_2 , q is true, therefore the first premise p > q is true. However at the closest p world, $w_1 r$ is false, so the conclusion p > r is false. Each of S_0 and $S_1 - S_0$ has only one world in it, so the model is a C_2 interpretation.

At the closest world where $p \lor q$, w_0 , r is true, making the premise true. At the closest world where q, r is false. Therefore q > r is false at w_0 , and the conclusion, $(p > r) \land (q > r)$ is also. Each of S_0 and $S_1 - S_0$ has only one world in it, so the model is a C_2 interpretation.

8. Determine whether the following hold in each of C_1 and C_2 :

(a)
$$p > (q \lor r) \vDash (p > q) \lor (p > r)$$

This holds in C_2 , but not in C_1 :

 C_2 : Let us assume the conclusion is false for a contrapositive proof. $\neg(p > q)$, and $\neg(p > r)$ are true at w_0 . Then there is a *p*-close world where $\neg q$ and a *p*-close world where $\neg r$, both relative to w_0 . In C_2 , by (6), because they both contain *p*, these two worlds are the same. Therefore there is a *p*-close world relative to w_0 where: $p, \neg q, \neg r$. But then the premise $p > (q \lor r)$ is false at w_0 .

 C_1 : (7) allows for the possibility of as many worlds as one likes, all equally similar worlds relative to w where p, as long as p is not true in w. Using this we can construct a counter-model.

In every p-close world to w_0 , $q \vee r$ is true, however it is not the case that either p > q or p > r is true at w_0 : w_1 makes the former false, and w_2 the latter.

This is a C_1 interpretation because S_0 is a singleton (see 5.7.8.).

(b) $p > q, \neg q \vDash \neg q > \neg p$

This holds in both C_1 and C_2 .

Let us assume the conclusion is false for a reductio. Then $\neg(\neg q > \neg p)$ is true at w_0 . So there is a world in the closest similarity sphere for $\neg q$ where p. But because $\neg q$ is true at w_0 , the closest $\neg q$ world must be w_0 , by (6) or (7). Which means that, since p is also true there, w_0 is also the closest p world, and so q is true at w_0 . Contradiction.

(c)
$$\Diamond p, p > q \vDash \neg (p > \neg q)$$

This holds in both C_1 and C_2 .

Let us take the conclusion to be false for reductio. Then $p > \neg q$ and p > q are both true at w_0 . So, $f_p(w_0) \subseteq [q]$ and $f_p(w_0) \subseteq [\neg q]$ which is contradictory by either (6) or (7), unless $f_p(w) = \phi$, but by $\Diamond p$ it does not.

(d) $p > (p > q) \vDash p > q$

This holds in both C_2 and C_1 .

Let us take the conclusion to be false for reductio. Then there is a *p*-close world to w_0 , w', where $\neg q$. The premise asserts that p > q is true at all *p*-close

worlds, so it is true at w'. By (6) or (7) w' is the unique *p*-close world to itself. Therefore q is true in w'. Contradiction.

(e)
$$p > (q > r) \models q > (p > r)$$

This is not valid in C_2 or C_1 .

The premise p > (q > r) is true at w_0 — the closest p world is w_2 , and from w_2 the closest q world is w_1 , where r is true. The conclusion is false — the closest q world is w_q , and from w_1 the closest p world is w_2 , where r is false.

This is a C_1 interpretation because S_0 is a singleton, and a C_2 interpretation because for every other S_i , $S_i - S_{i-1}$ is also a singleton. (see 5.7.8.)