
10. By constructing suitable tableaux, determine whether the following are
valid in Kt. Where the inference is invalid, specify a countermodel.

(a) ⊢ [F ](p ⊃ q) ⊃ ([F ]p ⊃ [F ]q)

¬([F ](p ⊃ q) ⊃ ([F ]p ⊃ [F ]q)), 0
[F ](p ⊃ q), 0

¬([F ]p ⊃ [F ]q), 0
[F ]p, 0
¬[F ]q, 0
〈F 〉¬q, 0

0r1
¬q, 1
p, 1

p ⊃ q, 1

¬p, 1
⊗

q, 1
⊗

(b) ⊢ 〈F 〉p ≡ ¬[F ]¬p

¬(〈F 〉p ≡ ¬[F ]¬p), 0

〈F 〉p, 0
¬¬[F ]¬p, 0
[F ]¬p, 0

0r1
p, 1
¬p, 1
⊗

¬〈F 〉p, 0
¬[F ]¬p, 0
[F ]¬p, 0
〈F 〉¬¬p, 0

0r1
¬¬p, 1
¬p, 1
⊗

(c) ⊢ p ⊃ [F ]〈P 〉p

¬(p ⊃ [F ]〈P 〉p), 0
p, 0

¬[F ]〈P 〉p, 0
〈F 〉¬〈P 〉p, 0

0r1
¬〈P 〉p, 1
[P ]¬p, 1
¬p, 0
⊗
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(d) [F ]p ⊃ [F ][F ]p 0 [P ]p ⊃ [P ][P ]p

[F ]p ⊃ [F ][F ]p, 0
¬([P ]p ⊃ [P ][P ]p), 0

[P ]p, 0
¬[P ][P ]p, 0
〈P 〉¬[P ]p, 0

1r0
¬[P ]p, 1
〈P 〉¬p, 1

p, 1
2r1
¬p, 2

¬[F ]p, 0
〈F 〉¬p, 0

0r3
¬p, 3

[F ][F ]p, 0

The following interpretation, taken from the left branch, shows this inference
to be invalid:

W = {w0, w1, w2, w3}

w1Rw0, w2Rw1, w0Rw3

vw1
(p) = 1, vw2

(p) = 0, vw3
(p) = 0

This can be represented in the following diagram:

¬p
w2 →

p
w1 → w0 →

¬p
w3

2



(e) ⊢ [F ](p ⊃ q) ⊃ (〈F 〉p ⊃ 〈F 〉q)

¬([F ](p ⊃ q) ⊃ (〈F 〉p ⊃ 〈F 〉q)), 0
[F ](p ⊃ q), 0

¬(〈F 〉p ⊃ 〈F 〉q), 0
〈F 〉p, 0
¬〈F 〉q, 0
[F ]¬q, 0

0r1
p, 1
¬q, 1

p ⊃ q, 1

¬p, 1
⊗

q, 1
⊗

(f) 〈F 〉〈F 〉p ⊃ 〈F 〉p 0 〈P 〉〈P 〉p ⊃ 〈P 〉p

〈F 〉〈F 〉p ⊃ 〈F 〉p, 0
¬(〈P 〉〈P 〉p ⊃ 〈P 〉p), 0

〈P 〉〈P 〉p, 0
¬〈P 〉p, 0
[P ]¬p, 0

1r0
〈P 〉p, 1
¬p, 1
2r1
p, 2

¬〈F 〉〈F 〉p, 0
[F ]¬〈F 〉p

〈F 〉p, 0
0r3
p

The following interpretation, taken from the right branch, shows this infer-
ence to be invalid:

W = {w0, w1, w2, w3}

w1Rw0, w2Rw1, w0Rw3

vw1
(p) = 0, vw2

(p) = 1, vw3
(p) = 1
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This can be represented in the following diagram:

p
w2 →

¬p
w1 → w0 →

p
w3

(g) ⊢ ([P ]p ∨ [P ]q) ⊃ [P ](p ∨ q)

¬(([P ]p ∨ [P ]q) ⊃ [P ](p ∨ q)), 0
[P ]p ∨ [P ]q, 0
¬[P ](p ∨ q), 0
〈P 〉¬(p ∨ q), 0

1r0
¬(p ∨ q), 1

¬p, 1
¬q, 1

[P ]p, 0
p, 1
⊗

[P ]q, 0
q, 1
⊗

(h) ⊢ 〈P 〉(p ∧ q) ⊃ ((〈P 〉p ∧ 〈P 〉q)

¬(〈P 〉(p ∧ q) ⊃ ((〈P 〉p ∧ 〈P 〉q)), 0
〈P 〉(p ∧ q), 0

¬(〈P 〉p ∧ 〈P 〉q), 0
1r0

p ∧ q, 1
p, 1
q, 1

¬〈P 〉p, 0
[P ]¬p, 0
¬p, 1
⊗

¬〈P 〉q, 0
[P ]¬q, 0
¬q, 1
⊗
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(i) 0 (〈F 〉p ∧ 〈F 〉q) ⊃ ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))

¬((〈F 〉p ∧ 〈F 〉q) ⊃ ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))), 0
〈F 〉p ∧ 〈F 〉q, 0

¬((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q))), 0
¬〈F 〉(p ∧ 〈F 〉q), 0
¬〈F 〉(p ∧ q), 0

¬〈F 〉(〈F 〉p ∧ q), 0
[F ]¬(p ∧ 〈F 〉q), 0

[F ]¬(p ∧ q), 0
[F ]¬(〈F 〉p ∧ q), 0

〈F 〉p, 0
〈F 〉q, 0

0r1
p, 1

¬(p ∧ 〈F 〉q), 1
¬(p ∧ q), 1

¬(〈F 〉p ∧ q), 1

¬p, 1
⊗

¬〈F 〉q, 1
[F ]¬q, 1

¬q, 1

¬〈F 〉p, 1
[F ]¬p, 1

0r2
q, 2

¬(p ∧ 〈F 〉q), 2
¬(p ∧ q), 2

¬(〈F 〉p ∧ q), 2

¬p, 2

¬〈F 〉p, 2
[F ]¬p, 2

¬p, 2 ¬〈F 〉q, 2
[F ]¬q, 2

¬q, 2
⊗

¬q, 2
⊗

¬q, 1
0r2
q, 2

¬(p ∧ 〈F 〉q), 2
¬(p ∧ q), 2

¬(〈F 〉p ∧ q), 2

¬p, 2

¬〈F 〉p, 2
[F ]¬p, 2

¬p, 2 ¬〈F 〉q, 2
[F ]¬q, 2

¬q, 2
⊗

¬q, 2
⊗

¬p, 1
⊗
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The following interpretation, taken from the left-most open branch, shows
this inference to be invalid:

W = {w0, w1, w2, }

w0Rw1, w0Rw2

vw1
(p) = 1, vw1

(q) = 0, vw2
(p) = 0, vw2

(q) = 1,

This can be represented in the following diagram:

w0

w1

p,¬q

w2

¬p, q
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(j) 0 (〈P 〉p ∧ 〈P 〉q) ⊃ ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))

¬((〈P 〉p ∧ 〈P 〉q) ⊃ ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))), 0
〈P 〉p ∧ 〈P 〉q, 0

¬((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q))), 0
¬〈P 〉(p ∧ 〈P 〉q), 0
¬〈P 〉(p ∧ q), 0

¬〈P 〉(〈P 〉p ∧ q), 0
[P ]¬(p ∧ 〈P 〉q), 0

[P ]¬(p ∧ q), 0
[P ]¬(〈P 〉p ∧ q), 0

〈P 〉p, 0
〈P 〉q, 0

1r0
p, 1

¬(p ∧ 〈P 〉q), 1
¬(p ∧ q), 1

¬(〈P 〉p ∧ q), 1

¬p, 1
⊗

¬〈P 〉q, 1
[P ]¬q, 1

¬q, 1

¬〈P 〉p, 1
[P ]¬p, 1

2r0
q, 2

¬(p ∧ 〈P 〉q), 2
¬(p ∧ q), 2

¬(〈P 〉p ∧ q), 2

¬p, 2

¬〈P 〉p, 2
[P ]¬p, 2

¬p, 2 ¬〈P 〉q, 2
[P ]¬q, 2

¬q, 2
⊗

¬q, 2
⊗

¬q, 1
2r0
q, 2

¬(p ∧ 〈P 〉q), 2
¬(p ∧ q), 2

¬(〈P 〉p ∧ q), 2

¬p, 2

¬〈P 〉p, 2
[P ]¬p, 2

¬p, 2 ¬〈P 〉q, 2
[P ]¬q, 2

¬q, 2
⊗

¬q, 2
⊗

¬p, 1
⊗
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The following interpretation, taken from the left-most open branch, shows
this inference to be invalid:

W = {w0, w1, w2, }

w1Rw0, w2Rw0

vw1
(p) = 1, vw1

(q) = 0, vw2
(p) = 0, vw2

(q) = 1,

This can be represented in the following diagram:

w0
ր տ

w1 w2

p,¬q ¬p, q

(k) ⊢ [P ](p ∧ q) ≡ ([P ]p ∧ [P ]q)

¬([P ](p ∧ q) ≡ ([P ]p ∧ [P ]q)), 0

[P ](p ∧ q), 0
¬([P ]p ∧ [P ]q), 0

¬[P ]p, 0
〈P 〉¬p, 0

1r0
¬p, 1
p ∧ q

p

q

⊗

¬[P ]q), 0
〈P 〉¬q, 0

1r0
¬q, 1
p ∧ q

p

q

⊗

¬[P ](p ∧ q), 0
[P ]p ∧ [P ]q, 0
〈P 〉¬(p ∧ q), 0

[P ]p, 0
[P ]q, 0

1r0
¬(p ∧ q), 1

p, 1
q, 1

¬p, 1
⊗

¬q, 1
⊗

(l) 0 [P ]p ⊃ 〈P 〉p

¬([P ]p ⊃ 〈P 〉p), 0
[P ]p, 0
¬〈P 〉p, 0
[P ]¬p, 0

The following interpretation shows this inference to be invalid:

W = {w0}

8



This can be represented in the following diagram:

w0

(m) 0 (p ∧ [P ]p) ⊃ 〈F 〉[P ]p

¬((p ∧ [P ]p) ⊃ 〈F 〉[P ]p), 0
p ∧ [P ]p, 0

¬〈F 〉[P ]p), 0
p, 0

[P ]p, 0
[F ]¬[P ]p, 0

The following interpretation shows this inference to be invalid:

W = {w0}

vw0
(p) = 1

This can be represented in the following diagram:

w0

p

(n) ⊢ 〈P 〉[F ]p ⊃ p

¬(〈P 〉[F ]p ⊃ p), 0
〈P 〉[F ]p, 0

¬p, 0
1r0

[F ]p, 1
p, 0
⊗
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(o) 0 [P ]([P ]p ⊃ p) ⊃ [P ]p

¬([P ]([P ]p ⊃ p) ⊃ [P ]p), 0
[P ]([P ]p ⊃ p), 0

¬[P ]p, 0
〈P 〉¬p, 0

1r0
¬p, 1

[P ]p ⊃ p, 1

¬[P ]p, 1
〈P 〉¬p, 1

2r1
¬p, 2

p, 1
⊗

The following interpretation, not taken from the tree, shows this inference
to be invalid:

W = {w0, w1, w2}

w1Rw0, w2Rw1

vw1
(p) = 0, vw2

(p) = 0

This can be represented in the following diagram:

¬p
w2 →

¬p
w1 → w0

(p) 0 〈P 〉[P ]p ⊃ [P ]〈P 〉p

¬(〈P 〉[P ]p ⊃ [P ]〈P 〉p), 0
〈P 〉[P ]p, 0
¬[P ]〈P 〉p, 0
〈P 〉¬〈P 〉p

1r0
[P ]p, 1

2r0
¬〈P 〉p, 2
[P ]¬p, 2
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The following interpretation shows this inference to be invalid:

W = {w0, w1, w2}

w1Rw0, w2Rw0

This can be represented in the following diagram:

w0
ր տ

w1 w2

(q) 0 〈F 〉[F ]p ⊃ p

¬(〈F 〉[F ]p ⊃ p), 0
〈F 〉[F ]p, 0

¬p, 0
0r1

[F ]p, 1

The following interpretation shows this inference to be invalid:

W = {w0, w1}

w0Rw1

vw0
(p) = 0

This can be represented in the following diagram:

¬p
w0 → w1
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(r) 0 (〈F 〉p ∧ 〈F 〉[F ]¬p) ⊃ 〈F 〉([P ]〈F 〉p ∧ [F ]¬p)

¬((〈F 〉p ∧ 〈F 〉[F ]¬p) ⊃ 〈F 〉([P ]〈F 〉p ∧ [F ]¬p)), 0
〈F 〉p ∧ 〈F 〉[F ]¬p, 0

¬〈F 〉([P ]〈F 〉p ∧ [F ]¬p), 0
[F ]¬([P ]〈F 〉p ∧ [F ]¬p), 0

〈F 〉p, 0
〈F 〉[F ]¬p, 0

0r1
p, 1

¬([P ]〈F 〉p ∧ [F ]¬p), 1

¬[P ]〈F 〉p, 1
〈P 〉¬〈F 〉p, 1

2r1
¬〈F 〉p, 2
[F ]¬p, 2
¬p, 1
⊗

¬[F ]¬p, 1
〈F 〉¬¬p, 1

1r2
¬¬p, 2
p, 2
0r3

[F ]¬p, 3
¬([P ]〈F 〉p ∧ [F ]¬p)

¬[P ]〈F 〉p, 3
〈P 〉¬〈F 〉p, 3

4r3
¬〈F 〉p, 4
[F ]¬p, 4
¬p, 3

¬[F ]¬p, 3
⊗

The interpretation taken from the open middle branch shows this inference
to be invalid:

W = {w0, w1, w2, w3, w4}

w0Rw1, w1Rw2, w0Rw3, w4Rw3

vw1
(p) = 1, vw2

(p) = 1, vw3
(p) = 0
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This can be represented in the following diagram:

w4 w0 −→ w1

p

−→ w2

p

w3

¬p

11. In the previous question, if the inference is invalid, repeat the question
in Kt

τ , Kt
δ and Kt

φ

(d) [F ]p ⊃ [F ][F ]p ⊢Kt
τ

[P ]p ⊃ [P ][P ]p

[F ]p ⊃ [F ][F ]p, 0
¬([P ]p ⊃ [P ][P ]p), 0

[P ]p, 0
¬[P ][P ]p, 0
〈P 〉¬[P ]p, 0

1r0
¬[P ]p, 1
〈P 〉¬p, 1

p, 1
2r1, 2r0
¬p, 2
p, 2
⊗
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(d) [F ]p ⊃ [F ][F ]p 0Kt
δ

[P ]p ⊃ [P ][P ]p

[F ]p ⊃ [F ][F ]p, 0
¬([P ]p ⊃ [P ][P ]p), 0

[P ]p, 0
¬[P ][P ]p, 0
〈P 〉¬[P ]p, 0

1r0
¬[P ]p, 1
〈P 〉¬p, 1

p, 1
2r0, 1r2

p, 2
3r1
¬p, 3

4r1, 3r4

¬[F ]p, 0
〈F 〉¬p, 0

0r5
¬p, 5

3r0, 2r3
...

[F ][F ]p, 0
3r0, 2r3

...

The following finite interpretation, not taken from the tree, shows this in-
ference to be invalid:

W = {w0, w1, w2}

w1Rw1, w2Rw2, w2Rw1, w1Rw0

vw1
(p) = 1, vw2

(p) = 0

This can be represented in the following diagram:

y

w2

¬p

→
y

w1

p

→ w0

Note that the idea of a world being related to itself is slightly counterintu-
itive in tense logic — if a world is related to itself, the point in time it represents
is both before and after itself.

Using this feature of reflexive worlds I have constructed the above finite in-
terpretation that satisfies the ‘denseness’ condition of Kδ. The Kδ condition
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specifies, if wi is related to wj then wi is related to some wk, and wk is related
to wj . This is satisfied because i, j, and k do not have to be distinct. In the
case above, as w2 is related to w1, there must be a world that w2 is related
to, which is related to w1. This world is w2 once more: w2Rw2 (wiRwk) and
w2Rw1 (wkRwj). If we think of the denseness condition as specifying that all
related worlds must have a world between them, w2 is the world between w2

and w1, and w1 is the world between w1 and w0.

Let us check that the interpretation works:

The premise [F ]p ⊃ [F ][F ]p is true at w0, because w0 is not related to any
world.

[P ]p is true at w0 because at all worlds related to w0, p is true.

[P ][P ]p is false at w0 because there is a world related to a world related to
w0, that is, w2, and p is false there.

Therefore the conclusion, [P ]p ⊃ [P ][P ]p, is false at w0, as required.

(d) [F ]p ⊃ [F ][F ]p 0Kt
φ

[P ]p ⊃ [P ][P ]p

[F ]p ⊃ [F ][F ]p, 0
¬([P ]p ⊃ [P ][P ]p), 0

[P ]p, 0
¬[P ][P ]p, 0
〈P 〉¬[P ]p, 0

1r0
¬[P ]p, 1
〈P 〉¬p, 1

p, 1
2r1
¬p, 2

¬[F ]p, 0
〈F 〉¬p, 0

0r3
¬p, 3

[F ][F ]p, 0

The following interpretation, taken from the left branch, shows this inference
to be invalid:

W = {w0, w1, w2, w3}

w1Rw0, w2Rw1, w0Rw3

15



vw1
(p) = 1, vw2

(p) = 0, vw3
(p) = 0

This can be represented in the following diagram:

w2

¬p

→ w1

p

→ w0 → w3

¬p

(f) 〈F 〉〈F 〉p ⊃ 〈F 〉p ⊢Kt
τ
〈P 〉〈P 〉p ⊃ 〈P 〉p

〈F 〉〈F 〉p ⊃ 〈F 〉p, 0
¬(〈P 〉〈P 〉p ⊃ 〈P 〉p), 0

〈P 〉〈P 〉p, 0
¬〈P 〉p, 0
[P ]¬p, 0

1r0
〈P 〉p, 1
¬p, 1

2r1, 2r0
p, 2
¬p, 2
⊗

(f) 〈F 〉〈F 〉p ⊃ 〈F 〉p ⊢Kt
δ
〈P 〉〈P 〉p ⊃ 〈P 〉p

〈F 〉〈F 〉p ⊃ 〈F 〉p, 0
¬(〈P 〉〈P 〉p ⊃ 〈P 〉p), 0

〈P 〉〈P 〉p, 0
¬〈P 〉p, 0
[P ]¬p, 0

1r0
〈P 〉p, 1
¬p, 1
2r1
p, 2

¬〈F 〉〈F 〉p, 0
[F ]¬〈F 〉p, 0

1r3, 3r0, 2r4, 4r1
...

〈F 〉p, 0
0r3
p, 3

1r4, 4r0, 2r5, 5r1, 3r6, 6r0
...
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The following interpretation, not taken from the tree, shows this inference
to be invalid:

W = {w0, w1, w2}

w1Rw1, w2Rw2, w2Rw1, w1Rw0

vw1
(p) = 0, vw2

(p) = 1

This can be represented in the following diagram:

y

w2

p

→
y

w1

¬p

→ w0

For an explanation of why this kind of interpretation works, see the solution
to (d) for Kt

δ.

Let us check that it works:

The premise 〈F 〉〈F 〉p ⊃ 〈F 〉p is true at w0, because the antecedent is false
at w0; w0 is related to no future worlds.

〈P 〉〈P 〉p is true at w0, because there is a world, related to a world, related
to w0 where p is true, that is, w2.

〈P 〉p is false at w0, because in all worlds related to w0, p is false.

Therefore, the conclusion, 〈P 〉〈P 〉p ⊃ 〈P 〉p, is false at w0, as required.

(f) 〈F 〉〈F 〉p ⊃ 〈F 〉p 0Kt
φ
〈P 〉〈P 〉p ⊃ 〈P 〉p

〈F 〉〈F 〉p ⊃ 〈F 〉p, 0
¬(〈P 〉〈P 〉p ⊃ 〈P 〉p), 0

〈P 〉〈P 〉p, 0
¬〈P 〉p, 0
[P ]¬p, 0

1r0
〈P 〉p, 1
¬p, 1
2r1
p, 2

¬〈F 〉〈F 〉p, 0
[F ]¬〈F 〉p

〈F 〉p, 0
0r3
p
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The following interpretation from the right-hand branch shows this inference
to be invalid:

W = {w0, w1, w2, w3}

w1Rw0, w2Rw1, w0Rw3

vw1
(p) = 0, vw2

(p) = 1, vw3
(p) = 1

This can be represented in the following diagram:

w2

p

→ w1

¬p

→ w0 → w3

p
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(i) 0Kt
τ

(〈F 〉p ∧ 〈F 〉q) ⊃ ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))

¬((〈F 〉p ∧ 〈F 〉q) ⊃ ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))), 0
〈F 〉p ∧ 〈F 〉q, 0

¬((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q))), 0
¬〈F 〉(p ∧ 〈F 〉q), 0
¬〈F 〉(p ∧ q), 0

¬〈F 〉(〈F 〉p ∧ q), 0
[F ]¬(p ∧ 〈F 〉q), 0

[F ]¬(p ∧ q), 0
[F ]¬(〈F 〉p ∧ q), 0

〈F 〉p, 0
〈F 〉q, 0

0r1
p, 1

¬(p ∧ 〈F 〉q), 1
¬(p ∧ q), 1

¬(〈F 〉p ∧ q), 1

¬p, 1
⊗

¬〈F 〉q, 1
[F ]¬q, 1

¬q, 1

¬〈F 〉p, 1
[F ]¬p, 1

0r2
q, 2

¬(p ∧ 〈F 〉q), 2
¬(p ∧ q), 2

¬(〈F 〉p ∧ q), 2

¬p, 2

¬〈F 〉p, 2
[F ]¬p, 2

¬p, 2 ¬〈F 〉q, 2
[F ]¬q, 2

¬q, 2
⊗

¬q, 2
⊗

¬q, 1
0r2
q, 2

¬(p ∧ 〈F 〉q), 2
¬(p ∧ q), 2

¬(〈F 〉p ∧ q), 2

¬p, 2

¬〈F 〉p, 2
[F ]¬p, 2

¬p, 2 ¬〈F 〉q, 2
[F ]¬q, 2

¬q, 2
⊗

¬q, 2
⊗

¬p, 1
⊗
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The following interpretation, taken from the left-most open branch, shows
this inference to be invalid:

W = {w0, w1, w2, }

w0Rw1, w0Rw2

vw1
(p) = 1, vw1

(q) = 0, vw2
(p) = 0, vw2

(q) = 1,

This can be represented in the following diagram:

w0

w1

p,¬q

w2

¬p, q
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(i) 0Kt
δ

(〈F 〉p ∧ 〈F 〉q) ⊃ ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))

¬((〈F 〉p ∧ 〈F 〉q) ⊃ ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))), 0
〈F 〉p ∧ 〈F 〉q, 0

¬((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q))), 0
¬〈F 〉(p ∧ 〈F 〉q), 0
¬〈F 〉(p ∧ q), 0

¬〈F 〉(〈F 〉p ∧ q), 0
[F ]¬(p ∧ 〈F 〉q), 0

[F ]¬(p ∧ q), 0
[F ]¬(〈F 〉p ∧ q), 0

〈F 〉p, 0
〈F 〉q, 0

0r1
p, 1

¬(p ∧ 〈F 〉q), 1
¬(p ∧ q), 1

¬(〈F 〉p ∧ q), 1

¬p, 1
⊗

¬〈F 〉q, 1
[F ]¬q, 1

¬q, 1

¬〈F 〉p, 1
[F ]¬p, 1

0r2
q, 2

¬(p ∧ 〈F 〉q), 2
¬(p ∧ q), 2

¬(〈F 〉p ∧ q), 2

¬p, 2

¬〈F 〉p, 2
[F ]¬p, 2

¬p, 2
0r3, 3r1
0r4, 4r2

...

¬〈F 〉q, 2
[F ]¬q, 2
0r3, 3r1
0r4, 4r2

...

¬q, 2
⊗

¬q, 2
⊗

¬q, 1
0r2
q, 2

¬(p ∧ 〈F 〉q), 2
¬(p ∧ q), 2

¬(〈F 〉p ∧ q), 2

¬p, 2

¬〈F 〉p, 2
[F ]¬p, 2

¬p, 2
0r3, 3r1
0r4, 4r2

...

¬〈F 〉q, 2
[F ]¬q, 2
0r3, 3r1
0r4, 4r2

...

¬q, 2
⊗

¬q, 2
⊗

¬p, 1
⊗
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The following interpretation, not taken from the tree shows this inference to
be invalid:

W = {w0, w1, w2}

w0Rw0, w0Rw1, w0Rw2

vw1
(p) = 1, vw1

(q) = 0, vw2
(p) = 0, vw2

(q) = 1,

This can be represented in the following diagram:

y

w0

w1

p,¬q

w2

¬p, q

For more on why this kind of counter-model satisfies the denseness condition
of Kt

δ, check the solution to (d) for Kt
δ.

Let us check that this counter-model works.

〈F 〉p is true at w0 because w0 is related to w1, and p is true there.

〈F 〉q is true at w0 because w0 is related to w2, and q is true there.

Thus, the antecedent (〈F 〉p ∧ 〈F 〉q), is true at w0.

〈F 〉(p ∧ 〈F 〉q), and 〈F 〉(〈F 〉p ∧ q) are false at w0, because the worlds w0 is
related to are not related to other worlds; 〈F 〉q and 〈F 〉p are false at both w1

and w2.

〈F 〉(p∧q) is false at w0 because w0 is related to no world where p∧q is true.

Therefore, the consequent, ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))
is false at w0, as required.
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(i) ⊢Kt
φ

(〈F 〉p ∧ 〈F 〉q) ⊃ ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))

¬((〈F 〉p ∧ 〈F 〉q) ⊃ ((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q)))), 0
〈F 〉p ∧ 〈F 〉q, 0

¬((〈F 〉(p ∧ 〈F 〉q)) ∨ 〈F 〉(p ∧ q) ∨ (〈F 〉(〈F 〉p ∧ q))), 0
¬〈F 〉(p ∧ 〈F 〉q), 0
¬〈F 〉(p ∧ q), 0

¬〈F 〉(〈F 〉p ∧ q), 0
[F ]¬(p ∧ 〈F 〉q), 0

[F ]¬(p ∧ q), 0
[F ]¬(〈F 〉p ∧ q), 0

〈F 〉p, 0
〈F 〉q, 0

0r1
p, 1

¬(p ∧ 〈F 〉q), 1
¬(p ∧ q), 1

¬(〈F 〉p ∧ q), 1

¬p, 1
⊗

¬〈F 〉q, 1
[F ]¬q, 1

¬q, 1

¬〈F 〉p, 1
[F ]¬p, 1

0r2
q, 2

¬(p ∧ 〈F 〉q), 2
¬(p ∧ q), 2

¬(〈F 〉p ∧ q), 2

¬p, 2

¬〈F 〉p, 2
[F ]¬p, 2

1r2
¬q, 2
⊗

1=2
¬q, 2
⊗

2r1
¬p, 1
⊗

¬q, 2
⊗

¬q, 2
⊗

¬q, 1
0r2
q, 2

¬(p ∧ 〈F 〉q), 2
¬(p ∧ q), 2

¬(〈F 〉p ∧ q), 2

¬p, 2

¬〈F 〉p, 2
[F ]¬p, 2

1r2
¬q, 2
⊗

1=2
¬q, 2
⊗

2r1
¬p, 1
⊗

¬q, 2
⊗

¬q, 2
⊗

¬p, 1
⊗
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(j) 0Kt
τ

(〈P 〉p ∧ 〈P 〉q) ⊃ ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))

¬((〈P 〉p ∧ 〈P 〉q) ⊃ ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))), 0
〈P 〉p ∧ 〈P 〉q, 0

¬((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q))), 0
¬〈P 〉(p ∧ 〈P 〉q), 0
¬〈P 〉(p ∧ q), 0

¬〈P 〉(〈P 〉p ∧ q), 0
[P ]¬(p ∧ 〈P 〉q), 0

[P ]¬(p ∧ q), 0
[P ]¬(〈P 〉p ∧ q), 0

〈P 〉p, 0
〈P 〉q, 0

1r0
p, 1

¬(p ∧ 〈P 〉q), 1
¬(p ∧ q), 1

¬(〈P 〉p ∧ q), 1

¬p, 1
⊗

¬〈P 〉q, 1
[P ]¬q, 1

¬q, 1

¬〈P 〉p, 1
[P ]¬p, 1

2r0
q, 2

¬(p ∧ 〈P 〉q), 2
¬(p ∧ q), 2

¬(〈P 〉p ∧ q), 2

¬p, 2

¬〈P 〉p, 2
[P ]¬p, 2

¬p, 2 ¬〈P 〉q, 2
[P ]¬q, 2

¬q, 2
⊗

¬q, 2
⊗

¬q, 1
2r0
q, 2

¬(p ∧ 〈P 〉q), 2
¬(p ∧ q), 2

¬(〈P 〉p ∧ q), 2

¬p, 2

¬〈P 〉p, 2
[P ]¬p, 2

¬p, 2 ¬〈P 〉q, 2
[P ]¬q, 2

¬q, 2
⊗

¬q, 2
⊗

¬p, 1
⊗
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The following interpretation, taken from the left-most open branch, shows
this inference to be invalid:

W = {w0, w1, w2}

w1Rw0, w2Rw0

vw1
(p) = 1, vw1

(q) = 0, vw2
(p) = 0, vw2

(q) = 1

This can be represented in the following diagram:

w0
ր տ

w1 w2

p,¬q ¬p, q
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(j) 0Kt
δ

(〈P 〉p ∧ 〈P 〉q) ⊃ ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))

¬((〈P 〉p ∧ 〈P 〉q) ⊃ ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))), 0
〈P 〉p ∧ 〈P 〉q, 0

¬((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q))), 0
¬〈P 〉(p ∧ 〈P 〉q), 0
¬〈P 〉(p ∧ q), 0

¬〈P 〉(〈P 〉p ∧ q), 0
[P ]¬(p ∧ 〈P 〉q), 0

[P ]¬(p ∧ q), 0
[P ]¬(〈P 〉p ∧ q), 0

〈P 〉p, 0
〈P 〉q, 0

1r0
p, 1

¬(p ∧ 〈P 〉q), 1
¬(p ∧ q), 1

¬(〈P 〉p ∧ q), 1

¬p, 1
⊗

¬〈P 〉q, 1
[P ]¬q, 1

¬q, 1

¬〈P 〉p, 1
[P ]¬p, 1

2r0
q, 2

¬(p ∧ 〈P 〉q), 2
¬(p ∧ q), 2

¬(〈P 〉p ∧ q), 2

¬p, 2

¬〈P 〉p, 2
[P ]¬p, 2

¬p, 2
3r0, 1r3
4r0, 2r4

...

¬〈P 〉q, 2
[P ]¬q, 2
3r0, 1r3
4r0, 2r4

...

¬q, 2
⊗

¬q, 2
⊗

¬q, 1
2r0
q, 2

¬(p ∧ 〈P 〉q), 2
¬(p ∧ q), 2

¬(〈P 〉p ∧ q), 2

¬p, 2

¬〈P 〉p, 2
[P ]¬p, 2

¬p, 2
3r0, 1r3
4r0, 2r4

...

¬〈P 〉q, 2
[P ]¬q, 2
3r0, 1r3
4r0, 2r4

...

¬q, 2
⊗

¬q, 2
⊗

¬p, 1
⊗
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The following interpretation, not taken from the tree, shows this inference
to be invalid:

W = {w0, w1, w2}

w1Rw1, w2Rw2, w1Rw0, w2Rw0

vw1
(p) = 1, vw1

(q) = 0, vw2
(p) = 0, vw2

(q) = 1

This can be represented in the following diagram:

w0
ր տ

y

w1
y

w2

p,¬q ¬p, q

For more on why this kind of counter-model satisfies the denseness condition
of Kt

δ, check the solution to (d) for Kt
δ.

Let us check that this counter-model works.

〈P 〉p is true at w0 because w1 is related to w0, and p is true at w1.

〈P 〉q is true at w0 because w2 is related to w0, and q is true at w2.

Thus, the antecedent (〈P 〉p ∧ 〈P 〉q), is true at w0.

〈P 〉(p ∧ 〈P 〉q) is false at w0 because p is false at w2, and q is false at w1.

〈P 〉(〈P 〉p ∧ q) is false at at w0, because q is false at w1 and p is false at w2.

〈P 〉(p ∧ q) is false at w0 because p ∧ q is false at w1 and w2.

Therefore, the consequent, ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))
is false at w0, as required.
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(j) ⊢Kt
φ

(〈P 〉p ∧ 〈P 〉q) ⊃ ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))

¬((〈P 〉p ∧ 〈P 〉q) ⊃ ((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q)))), 0
〈P 〉p ∧ 〈P 〉q, 0

¬((〈P 〉(p ∧ 〈P 〉q)) ∨ 〈P 〉(p ∧ q) ∨ (〈P 〉(〈P 〉p ∧ q))), 0
¬〈P 〉(p ∧ 〈P 〉q), 0
¬〈P 〉(p ∧ q), 0

¬〈P 〉(〈P 〉p ∧ q), 0
[P ]¬(p ∧ 〈P 〉q), 0

[P ]¬(p ∧ q), 0
[P ]¬(〈P 〉p ∧ q), 0

〈P 〉p, 0
〈P 〉q, 0

1r0
p, 1

¬(p ∧ 〈P 〉q), 1
¬(p ∧ q), 1

¬(〈P 〉p ∧ q), 1

¬p, 1
⊗

¬〈P 〉q, 1
[P ]¬q, 1

¬q, 1

¬〈P 〉p, 1
[P ]¬p, 1

2r0
q, 2

¬(p ∧ 〈P 〉q), 2
¬(p ∧ q), 2

¬(〈P 〉p ∧ q), 2

¬p, 2

¬〈P 〉p, 2
[P ]¬p, 2

2r1
¬q, 2
⊗

1=2
¬q, 2
⊗

1r2
¬p, 1
⊗

¬q, 2
⊗

¬q, 2
⊗

¬q, 1
2r0
q, 2

¬(p ∧ 〈P 〉q), 2
¬(p ∧ q), 2

¬(〈P 〉p ∧ q), 2

¬p, 2

¬〈P 〉p, 2
[P ]¬p, 2

2r1
¬q, 2
⊗

1=2
¬q, 2
⊗

1r2
¬p, 1
⊗

¬q, 2
⊗

¬q, 2
⊗

¬p, 1
⊗
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(l) 0Kt
τ

[P ]p ⊃ 〈P 〉p

¬([P ]p ⊃ 〈P 〉p), 0
[P ]p, 0
¬〈P 〉p, 0
[P ]¬p, 0

The following interpretation shows this inference to be invalid:

W = {w0}

This can be represented in the following diagram:

w0

(l) 0Kt
δ

[P ]p ⊃ 〈P 〉p

¬([P ]p ⊃ 〈P 〉p), 0
[P ]p, 0
¬〈P 〉p, 0
[P ]¬p, 0

The following interpretation shows this inference to be invalid:

W = {w0}

This can be represented in the following diagram:

w0

(l) 0Kt
φ

[P ]p ⊃ 〈P 〉p

¬([P ]p ⊃ 〈P 〉p), 0
[P ]p, 0
¬〈P 〉p, 0
[P ]¬p, 0

The following interpretation shows this inference to be invalid:

W = {w0}

This can be represented in the following diagram:

w0
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(m) 0 (p ∧ [P ]p) ⊃Kt
τ
〈F 〉[P ]p

¬((p ∧ [P ]p) ⊃ 〈F 〉[P ]p), 0
p ∧ [P ]p, 0

¬〈F 〉[P ]p), 0
p, 0

[P ]p, 0
[F ]¬[P ]p, 0

The following interpretation shows this inference to be invalid:

W = {w0}

vw0
(p) = 1

This can be represented in the following diagram:

w0

p

(m) 0 (p ∧ [P ]p) ⊃Kt
δ
〈F 〉[P ]p

¬((p ∧ [P ]p) ⊃ 〈F 〉[P ]p), 0
p ∧ [P ]p, 0

¬〈F 〉[P ]p), 0
p, 0

[P ]p, 0
[F ]¬[P ]p, 0

The following interpretation shows this inference to be invalid:

W = {w0}

vw0
(p) = 1

This can be represented in the following diagram:

w0

p
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(m) 0 (p ∧ [P ]p) ⊃Kt
φ
〈F 〉[P ]p

¬((p ∧ [P ]p) ⊃ 〈F 〉[P ]p), 0
p ∧ [P ]p, 0

¬〈F 〉[P ]p), 0
p, 0

[P ]p, 0
[F ]¬[P ]p, 0

The following interpretation shows this inference to be invalid:

W = {w0}

vw0
(p) = 1

This can be represented in the following diagram:

w0

p

(o) 0Kt
τ

[P ]([P ]p ⊃ p) ⊃ [P ]p

¬([P ]([P ]p ⊃ p) ⊃ [P ]p), 0
[P ]([P ]p ⊃ p), 0

¬[P ]p, 0
〈P 〉¬p, 0

1r0
¬p, 1

[P ]p ⊃ p, 1

¬[P ]p, 1
〈P 〉¬p, 1
2r1, 2r0
¬p, 2

[P ]p ⊃ p, 2

¬[P ]p, 2
〈P 〉¬p, 2

3r2, 3r1, 3r0
...

p, 2
⊗

p, 1
⊗

The following interpretation shows this inference to be invalid:

W = {w0, w1, w2, w3...}
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w1Rw0, w2Rw1, w2Rw0, w3Rw2, w3Rw1, w3Rw0...

vw1
(p) = 0, vw2

(p) = 0, vw3
(p) = 0...

This can be represented in the following diagram:

...
¬p
w3 →

¬p
w2 →

¬p
w1 → w0

(o) 0Kt
δ

[P ]([P ]p ⊃ p) ⊃ [P ]p

¬([P ]([P ]p ⊃ p) ⊃ [P ]p), 0
[P ]([P ]p ⊃ p), 0

¬[P ]p, 0
〈P 〉¬p, 0

1r0
¬p, 1

[P ]p ⊃ p, 1

¬[P ]p, 1
〈P 〉¬p, 1

2r1
¬p, 2

3r0, 1r3, 4r1, 2r4
...

p, 1
⊗

The following interpretation, not taken from the tree, shows this inference
to be invalid:

W = {w0, w1, w2}

w1Rw1, w2Rw2, w1Rw0, w2Rw1

vw0
(p) = 0, vw1

(p) = 0, vw2
(p) = 0

This can be represented in the following diagram:

y

w2

¬p

→
y

w1

¬p

→ w0

¬p

For more on why these kind of interpretations satisfy the denseness require-
ment of Kt

δ, see the solution to (d) for Kt
δ.
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Let us check that the counter-model works.

The antecedent, [P ]([P ]p ⊃ p) is true at w0, because at all worlds related to
w0, i.e., w1, [P ]p is false, and hence [P ]p ⊃ p is true.

The consequent [P ]p is false at w0, because p is false at w1, as required.

(o) 0Kt
φ

[P ]([P ]p ⊃ p) ⊃ [P ]p

¬([P ]([P ]p ⊃ p) ⊃ [P ]p), 0
[P ]([P ]p ⊃ p), 0

¬[P ]p, 0
〈P 〉¬p, 0

1r0
¬p, 1

[P ]p ⊃ p, 1

¬[P ]p, 1
〈P 〉¬p, 1

2r1
¬p, 2

p, 1
⊗

The following interpretation, not taken from the tree, shows this inference
to be invalid:

W = {w0, w1, w2, }

w1Rw0, w2Rw1

vw1
(p) = 0, vw2

(p) = 0

This can be represented in the following diagram:

w2

¬p

→ w1

¬p

→ w0

Let us check that the counter-model works.

The antecedent, [P ]([P ]p ⊃ p) is true at w0, because at all worlds related to
w0, i.e., w1, [P ]p is false, and hence [P ]p ⊃ p is true.

The consequent [P ]p is false at w0, because p is false at w1, as required.
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(p) 0Kt
τ
〈P 〉[P ]p ⊃ [P ]〈P 〉p

¬(〈P 〉[P ]p ⊃ [P ]〈P 〉p), 0
〈P 〉[P ]p, 0
¬[P ]〈P 〉p, 0
〈P 〉¬〈P 〉p

1r0
[P ]p, 1

2r0
¬〈P 〉p, 2
[P ]¬p, 2

The following interpretation shows this inference to be invalid:

W = {w0, w1, w2}

w1Rw0, w2Rw0

This can be represented in the following diagram:

w0
ր տ

w1 w2

(p) 0Kt
δ
〈P 〉[P ]p ⊃ [P ]〈P 〉p

¬(〈P 〉[P ]p ⊃ [P ]〈P 〉p), 0
〈P 〉[P ]p, 0
¬[P ]〈P 〉p, 0
〈P 〉¬〈P 〉p

1r0
[P ]p, 1

2r0
¬〈P 〉p, 2
[P ]¬p, 2

1r3, 3r0, 2r4, 4r1
...
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The following interpretation, not taken from the tree, shows this inference
to be invalid:

W = {w0, w1, w2}

w1Rw1, w2Rw2, w1Rw0, w2Rw0

vw1
(p) = 1, vw2

(p) = 0

This can be represented in the following diagram:

w0
ր տ

y

w1
y

w2

p ¬p

For more on why these kind of interpretations satisfy the denseness require-
ment of Kt

δ, see the solution to (d) for Kt
δ.

Let us check that the counter-model works.

The antecedent, 〈P 〉[P ]p is true at w0, because at a world related to w0, i.e.
w1, [P ]p is true.

The consequent [P ]〈P 〉p is false at w0, because at w2 related to w0, 〈P 〉p is
false.

Thus the inference is invalid, as required.

(p) 0Kt
φ
〈P 〉[P ]p ⊃ [P ]〈P 〉p

¬(〈P 〉[P ]p ⊃ [P ]〈P 〉p), 0
〈P 〉[P ]p, 0
¬[P ]〈P 〉p, 0
〈P 〉¬〈P 〉p

1r0
[P ]p, 1

2r0
¬〈P 〉p, 2
[P ]¬p, 2

2r1
p, 2

1=2 1r2
¬p, 1
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The following interpretation, from the middle branch, shows this inference
to be invalid:

W = {w0, w1}

w1Rw0

This can be represented in the following diagram:

w0

↑

w1

(q) 0Kt
τ
〈F 〉[F ]p ⊃ p

¬(〈F 〉[F ]p ⊃ p), 0
〈F 〉[F ]p, 0

¬p, 0
0r1

[F ]p, 1

The following interpretation shows this inference to be invalid:

W = {w0, w1}

w0Rw1

vw0
(p) = 0

This can be represented in the following diagram:

w0

¬p

−→ w1

(q) 0Kt
δ
〈F 〉[F ]p ⊃ p

¬(〈F 〉[F ]p ⊃ p), 0
〈F 〉[F ]p, 0

¬p, 0
0r1

[F ]p, 1
0r2, 2r1

...
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The following interpretation, not taken from the tree, shows this inference
to be invalid:

W = {w0, w1}

w0Rw0, w0Rw1

vw0
(p) = 0

This can be represented in the following diagram:

y

w0

¬p

→ w1

For more on why these kind of interpretations satisfy the denseness require-
ment of Kt

δ, see the solution to (d) for Kt
δ.

Let us check that the counter-model works.

[F ]p is true at w1, because w1 is not related to any worlds. So, the an-
tecedent, 〈F 〉[F ]p is true at w0, because w0 is related to w1.

The consequent p is false at w0, because p is false at w0.

Thus the inference is invalid, as required.

(q) 0Kt
φ
〈F 〉[F ]p ⊃ p

¬(〈F 〉[F ]p ⊃ p), 0
〈F 〉[F ]p, 0

¬p, 0
0r1

[F ]p, 1

The following interpretation shows this inference to be invalid:

W = {w0, w1}

w0Rw1

vw0
(p) = 0
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This can be represented in the following diagram:

¬p
w0 → w1

(r) 0Kt
τ

(〈F 〉p ∧ 〈F 〉[F ]¬p) ⊃ 〈F 〉([P ]〈F 〉p ∧ [F ]¬p)

¬((〈F 〉p ∧ 〈F 〉[F ]¬p) ⊃ 〈F 〉([P ]〈F 〉p ∧ [F ]¬p)), 0
〈F 〉p ∧ 〈F 〉[F ]¬p, 0

¬〈F 〉([P ]〈F 〉p ∧ [F ]¬p), 0
[F ]¬([P ]〈F 〉p ∧ [F ]¬p), 0

〈F 〉p, 0
〈F 〉[F ]¬p, 0

0r1
p, 1

¬([P ]〈F 〉p ∧ [F ]¬p), 1

¬[P ]〈F 〉p
〈P 〉¬〈F 〉p

2r1
¬〈F 〉p, 2
[F ]¬p, 2
¬p, 1
⊗

¬[F ]¬p, 1
〈F 〉¬¬p, 1
1r2, 0r2
¬¬p, 2
p, 2
0r3

[F ]¬p, 3
[P ]〈F 〉p ∧ [F ]¬p, 2

...

This interpretation, not taken from the tree, shows this inference to be in-
valid:

W = {w0, w1, w2, w3, w4}

w0Rw1, w1Rw2, w0Rw2, w0Rw3, w4Rw3

vw1
(p) = 1, vw2

(p) = 1, vw3
(p) = 0
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This can be represented in the following diagram:

w4 w0 −→
p

w1 −→
p

w2

w3

¬p

Let us check that this counter-model works:

〈F 〉p is made true at at w0 by p being true at the related w1.

〈F 〉[F ]¬p is made true at w0 by w3.

Therefore the antecedent, 〈F 〉p ∧ 〈F 〉[F ]¬p, is true at at w0.

However, there is no world making 〈F 〉([P ]〈F 〉p ∧ [F ]¬p) true at w0. For
this, a world w0 is related to would have to both make [P ]〈F 〉p, and [F ]¬p true.
w1 makes the former true, but not the latter; w3 makes the latter true, but not
the former, because w4 is related to w3, and hence a past world in relation to w3.

Therefore, the consequent 〈F 〉([P ]〈F 〉p ∧ [F ]¬p) is false at w0, as required.
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(r) 0Kt
δ

(〈F 〉p ∧ 〈F 〉[F ]¬p) ⊃ 〈F 〉([P ]〈F 〉p ∧ [F ]¬p)

¬((〈F 〉p ∧ 〈F 〉[F ]¬p) ⊃ 〈F 〉([P ]〈F 〉p ∧ [F ]¬p)), 0
〈F 〉p ∧ 〈F 〉[F ]¬p, 0

¬〈F 〉([P ]〈F 〉p ∧ [F ]¬p), 0
[F ]¬([P ]〈F 〉p ∧ [F ]¬p), 0

〈F 〉p, 0
〈F 〉[F ]¬p, 0

0r1
p, 1

¬([P ]〈F 〉p ∧ [F ]¬p), 1

¬[P ]〈F 〉p
〈P 〉¬〈F 〉p

2r1
¬〈F 〉p, 2
[F ]¬p, 2
¬p, 1
⊗

¬[F ]¬p, 1
〈F 〉¬¬p, 1

1r2
¬¬p, 2

p, 2
0r3

[F ]¬p, 3
0r4, 4r1, 1r5, 5r2, 0r6, 6r3

...

This interpretation, not taken from the tree, shows this inference to be in-
valid:

W = {w0, w1, w2, w3}

w0Rw0, w1Rw1, w3Rw3, w0Rw1, w1Rw2, w0Rw3

vw1
(p) = 1, vw2

(p) = 1, vw3
(p) = 0

This can be represented in the following diagram:

y

w0 −→
y

w1

p

−→ w2

p

y

w3

¬p

Let us check that this counter-model works:

〈F 〉p is made true at w0 by p being true at the related w1.
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〈F 〉[F ]¬p is made true at w0 by ¬p being true at the related w3.

Therefore the antecedent, 〈F 〉p ∧ 〈F 〉[F ]¬p, is true at w0.

However, there is no world making 〈F 〉([P ]〈F 〉p ∧ [F ]¬p) true at w0. For
this, a world w0 is related to would have to both make [P ]〈F 〉p, and [F ]¬p true.
w1 makes the former true, but not the latter; w3 makes the latter true, but not
the former, because it is related to itself, and hence a past world in relation to
itself. (See the solution to (d) for δ for a little more on this.)

Therefore, the consequent 〈F 〉([P ]〈F 〉p ∧ [F ]¬p) is false at w0, as required.

(r) 0Kt
φ

(〈F 〉p ∧ 〈F 〉[F ]¬p) ⊃ 〈F 〉([P ]〈F 〉p ∧ [F ]¬p)

¬((〈F 〉p ∧ 〈F 〉[F ]¬p) ⊃ 〈F 〉([P ]〈F 〉p ∧ [F ]¬p)), 0
〈F 〉p ∧ 〈F 〉[F ]¬p, 0

¬〈F 〉([P ]〈F 〉p ∧ [F ]¬p), 0
[F ]¬([P ]〈F 〉p ∧ [F ]¬p), 0

〈F 〉p, 0
〈F 〉[F ]¬p, 0

0r1
p, 1

¬([P ]〈F 〉p ∧ [F ]¬p), 1

¬[P ]〈F 〉p
〈P 〉¬〈F 〉p

2r1
¬〈F 〉p, 2
[F ]¬p, 2
¬p, 1
⊗

¬[F ]¬p, 1
〈F 〉¬¬p, 1

1r2
¬¬p, 2

p, 2
0r3

[F ]¬p, 3
¬([P ]〈F 〉p ∧ [F ]¬p), 3

1r3
...

1=3
...

3r1
...

]
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This interpretation, not taken from the tree, shows this inference to be in-
valid:

W = {w0, w1, w2, w3, w4}

w0Rw1, w1Rw2, w0Rw3, w4Rw3, w1Rw3, w4Rw0

vw1
(p) = 1, vw2

(p) = 1, vw3
(p) = 0

This can be represented in the following diagram:

w4 −→ w0 −→
p

w1 −→
p

w2

w3

¬p

Let us check that this counter-model works:

〈F 〉p is made true at w0 by p being true at w1.

〈F 〉[F ]¬p is made true at w0 by ¬p being true at w3.

Therefore the antecedent, 〈F 〉p ∧ 〈F 〉[F ]¬p, is true at w0.

However, there is no world making 〈F 〉([P ]〈F 〉p ∧ [F ]¬p) true at w0. For
this, a world w0 is related to would have to both make [P ]〈F 〉p, and [F ]¬p true.
w1 makes the former true, but not the latter; w3 makes the latter true, but not
the former, because w4 is related to w3 (a past world in relation to w3).

Therefore, the consequent 〈F 〉([P ]〈F 〉p ∧ [F ]¬p) is false at w0, as required.

12. Consider a tense logic in which the relation R is constrained by the
following condition. There is an x such that: (i) for no y, xRy; and (ii) for all y

distinct from x, yRx. Show that [F ](A∧¬A)∨〈F 〉[F ](A∧¬A) is a logical truth.

Take any interpretation. Let w be the the world which is not related to any
world. Then [F ](A∧¬A) is true at w. Therefore [F ](A∧¬A)∨〈F 〉[F ](A∧¬A)
is true at w.

Let w′ be any other world. w′ is related to w. So, 〈F 〉[F ](A ∧ ¬A) is true
at w′. Therefore [F ](A ∧ ¬A) ∨ 〈F 〉[F ](A ∧ ¬A) is true at w′.

In any interpretation, [F ](A∧¬A)∨ 〈F 〉[F ](A∧¬A) is true at w, and at all
other worlds, therefore it is a logical truth.
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13. If an inference is valid in Kt
τ , does it follow that its mirror image is?

What about Kt
δ and Kt

φ?

Consider any interpretation. Let its mirror image be the same, except that
we replace R with its converse, Rc , where xRy iff yRcx.

Kt
τ

Suppose that an inference is invalid in Kt
τ , and that I is a counter-model.

The mirror image of I is a counter-model for the mirror image of the inference,
and it is still an interpretation for Kt

τ , because the τ restriction is symmetric.
That is, suppose that xRcy and yRcz. Then yRx and zRy. So zRx, and xRcz.

Kt
δ

The same can be said for Kt
δ. Suppose that an inference is invalid in Kt

δ,
and that I is a counter-model. The mirror image of I is a counter-model for the
mirror image of the inference, and it is still an interpretation for Kt

δ, because
the δ restriction is symmetric. That is, suppose that xRcy, and so yRx. Then
yRz and zRx. So xRcz and zRcy.

Kt
φ

In fact the result fails for Kt
φ: We saw in 3.6v.7 that 〈F 〉p ∧ 〈F 〉q ⊢Ktφ

〈F 〉(p ∧ q) ∨ 〈F 〉(p ∧ 〈F 〉q) ∨ 〈F 〉(〈F 〉p ∧ q) is valid; its mirror image is not, as
we saw in 11(j):

〈P 〉p ∧ 〈P 〉q 0Ktφ 〈P 〉(p ∧ q) ∨ 〈P 〉(p ∧ 〈P 〉q) ∨ 〈P 〉(〈P 〉p ∧ q)

Tree as in 11(j).

15. *Fill in the details omitted in 3.7

3.7.5 Check the case for ♦ in the proof of RTL Σ �Kρστ
iff Σ �KvA

v′w(♦A) = 1 iff for some x ǫ W ′ such that wR′x, v′x(A) = 1
iff for some x ǫ W ′ such that wR′x, vx(A) = 1 (by IH)
iff for some x ǫ W such that wRx, vx(A) = 1 (*)
iff vw(♦A) = 1

The line (*) holds since wRx iff x ǫ W ′ iff wR′x �

3.7.6 Check the new cases for [P ] and 〈P 〉 in the Soundness and Complete-
ness Lemmas.
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Soundness Lemma

Let f be a function which shows interpretation I to be faithful to branch
of a tableau b. Suppose [P ]A, i is on b, and that we apply the rule. Since I is
faithful to b, [P ]A is true at f(i). Moreover, for any i and j, such that jri is on
b, f(j)Rf(i). Hence, by the truth conditions for for [P ], A is true at f(j) and
so I is faithful to the extension of the branch.

Let f be a function which shows interpretation I to be faithful to branch of
a tableau b. Suppose ¬[P ]A, i is on b, and that we apply the rule. Since I is
faithful to b, ¬[P ]A is true at f(i). Moreover, ¬[P ]A iff 〈P 〉¬A:

vw(¬[P ]) = 1 iff vw([P ]) = 0
iff for some w′ such that w′Rw, v′w(A) = 0
iff for some w′ such that w′Rw, v′w(¬A) = 1
iff vw(〈F 〉¬A) = 1

Therefore, f shows I to be faithful to the extension of the branch.

Suppose 〈P 〉A, i is on b, and that we apply the rule to get nodes of the
form jri and A, j. Since I is faithful to b, 〈P 〉A is true at f(i). Moreover,
for some wǫ W , wRf(i), and A is true at w. Let f ′ be the same as f except
that f ′(j) = w. f ′ shows I to be faithful to b, since f and f ′ differ only at j.
Further, by definition, f ′(j)Rf ′(i), and A is true at f ′(j). Hence f ′ shows I to
be faithful to the extended branch.

Let f be a function which shows interpretation I to be faithful to branch of
a tableau b. Suppose ¬〈P 〉A, i is on b, and that we apply the rule. Since I is
faithful to b, ¬〈P 〉A is true at f(i). Moreover, ¬〈P 〉A iff [P ]¬A:

vw(¬〈P 〉) = 1 iff vw(〈P 〉) = 0
iff for all w′ such that w′Rw, v′w(A) = 0
iff for all w′ such that w′Rw, v′w(¬A) = 1
iff vw([F ]¬A) = 1

Therefore, f shows I to be faithful to the extension of the branch.

�
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Completeness Lemma

If formula A occurs on open complete branch of a tableau b, and is of the
form 〈P 〉B, then the rule has been applied to 〈P 〉B, i. Thus, for some j such
that jRi is on b, B, j is on b. By construction and the induction hypothesis,
for some wj such that wjRwi, B is true at wj . Hence 〈P 〉B is true at wi, as
required.

If A occurs on b, and is of the form ¬〈P 〉B, then the rule for negated pos-
sibility has been applied to ¬〈P 〉B, i. Thus, [P ]¬B, i is on b. So, for all j such
that jRi, ¬B, j is on b. By induction hypothesis, for all j such that wjRwi, B

is false at wj . Hence ♦B is false at wi, as required.

If formula A occurs on an open complete branch of a tableau b, and is of the
form [P ]B, then the rule has been applied to [P ]B, i. Thus, for all j such that
jRi is on b, B, j is on b. By construction and the induction hypothesis, for all
wj such that wjRwi, B is true at wj . Hence [P ]B is true at wi, as required.

If A occurs on b, and is of the form ¬[P ]B, then the rule for negated necessity
has been applied to ¬[P ]B, i. Thus, 〈P 〉¬B, i is on b. So, for some j such that
jRi, ¬B, j is on b. By induction hypothesis, for some j such that wjRwi, B is
false at wj . Hence [P ]B is false at wi, as required.

�

3.7.7 Check the Completeness Lemma case for η′, and the last two possibil-
ities for the = case.

η′

If wi ǫ W then for some j, jri is on b. Hence, for some j, wjRwi as required.

=

Suppose that α(i) and i = j are on b, and that we apply the rule to get α(j).
Since f shows I to be faithful to b, f(i) = f(j). If α(i) is A, i then A is true at
f(i). Hence A is true at f(j) as required. If α(i) is kri, then f(k)Rf(i) and so
f(k)Rf(j), as required. If α(i) is i = k, then, because f(j) = f(k), j = k as
required.
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3.7.8 Part 1. Check that the revised completeness lemma still applies to
〈F 〉, [P ], and〈P 〉. and the ρ, τ , σ, η, η′ and β cases.

〈F 〉

Suppose that 〈F 〉B, i is on b. Then there is some j ǫ I, such that irj is on
b, and B, j is on b. Hence by construction and induction hypothesis, for some
w[j] such that w[i]Rw[j], B is true at w[j], as required. Suppose that ¬〈F 〉B, i is
on b. Then [F ]¬B, i is on b. Therefore, for all j ǫ I, such that irj is on b, ¬B, j

is on b. Hence by construction and induction hypothesis, for all w[j] such that
w[i]Rw[j], ¬B is true at w[j], and hence B is false at w[j], as required.

[P ]

Suppose that [P ]B, i is on b. Then for all j ǫ I such that jri is on b, B, j

is on b. Hence, by construction and induction hypothesis, for all w[j] such that
w[j]Rw[i], B is true at w[j], as required. Suppose that ¬[P ]B, i is on b. Then
〈P 〉¬B, i is on b, as, therefore are irj and ¬B, j, for some j. By construction
and induction hypothesis, w[j]Rw[i] and B is false at w[j]. Hence, [F ]B is false
at w[i] as required.

〈P 〉

Suppose that 〈P 〉B, i is on b. Then there is some j ǫ I, such that jri is on
b, and B, j is on b. Hence by construction and induction hypothesis, for some
w[j] such that w[j]Rw[i], B is true at w[j], as required. Suppose that ¬〈P 〉B, i is
on b. Then [P ]¬B, i is on b. Therefore, for all j ǫ I, such that jri is on b, ¬B, j

is on b. Hence by construction and induction hypothesis, for all w[j] such that
w[j]Rw[i], ¬B is true at w[j], and hence B is false at w[j], as required.

3.7.8 Part 2. Check that the induced interpretation is of the appropriate
kind if the corresponding tableau rule is used, for the ρ, τ , σ, η, η′ and β cases.

ρ

Suppose w[i] ǫ W . Then i occurs on b and by the ρ rule iri is on b. Thus
w[i]Rw[i] as required.

τ

Suppose that w[i]Rw[j] and w[j]Rw[k]. Then irj, and jrk are on b. So by
the τ rule, irk is on b. Hence w[i]Rw[k], as required.
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σ

Suppose that w[i]Rw[j]. Then irj is on b. So by the σ rule, jri is on b. Hence
w[j]Rw[i], as required.

η

Suppose that w[i] ǫ W . Then i occurs on b and by the η rule, irj is on b, for
some new j. Hence w[i]Rw[j], as required.

η′

Suppose that w[i] ǫ W . Then i occurs on b and by the η′ rule jri is on b, for
some new j. Hence w[j]Rw[i], as required.

β

Suppose that w[j]Rw[i] and w[k]Rw[i]. (Where [i], [j] and [k] are distinct).
Then jri and kri are on b. So, by the β rule , either jrk, krj, or j = k are on
b; so either w[j]Rw[i], w[k]Rw[j] or j ∼ k. If α(i) is i = k then f(i) = f(k). But
f(i) = f(j), so f(j) = f(k), as required. In all three cases therefore, we have
what we need.

�

16. *Work out the details of the semantics and tableaux for a language with
both modal and tense operators.

We can create a joint system by postulating two accessibility relations. Let
the accessibility relation for modal logic be R and that for temporal logic be S.
Interpretations for this joint language are now of the form I = 〈W, R, S, v〉.

Intuitively, worlds are now related in two ways - via time and necessity.

We must distinguish between the two relations in tableaux as well. Let us
keep the standard modal relation as irj, and change the temporal relation to
isj. Thus, s is substituted for r in all the temporal tableau rules:

[F ]A, i

isj

↓
A, j
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< F > A, i

↓
isj

A, j

[P ]A, i

jsi

↓
A, j

< P > A, i

↓
jsi

A, j

The Soundness and Completeness proofs are exactly the same as for stan-
dard temporal logic, with the addition of duplicate cases for ‘s’

�

This is a very basic model, where there are no inter-relations between R and
S. However, it could be expanded upon to produce stronger logics by adding
constraints on the relations. A natural one might be, anything that is happen-
ing, has happened, or will happen is possible. This could be fomulated by the
addition of the following constraints: for all w, wRw; if wSw′ then wRw′, and
if w′Sw then wRw′. The details are left to the interested reader.

17. *Show that the tableaux for Kv, as described in 3.5.3, are sound and
complete with respect to the semantics, as described in 3.5.2.

The proof proceeds in exactly the same fashion as the proofs for K in section
2, because Kυ is not treated as a restriction - rather as new rules for � and ♦,
and their negations. We shall simply show that the Soundness and Complete-
ness Lemmas hold with the new rules.

Soundness:

Suppose that f shows I to be faithful to branch section b, that �A, i ap-
pears on b, and that we apply the relevant rule to it. Since I is faithful to b, �A

is true at f(i). Moreover, for all i and j, f(i)Rf(j). Hence by the truth con-
ditions for �, A is true at f(j), and so I is faithful to the extension of the branch.
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Suppose that f shows I to be faithful to branch section b, that ¬�A, i ap-
pears on b, and that we apply the relevant rule to it. Since I is faithful to b,
�A is false at f(i). So there is some w ǫ W such that f(i)Rw, and A is false at
w. Let f ′ be exactly the same as f except that f(j) = w. Since all worlds are
related to one another, f ′(i)Rf ′(j), and A is false at f ′(j), hence f ′ shows I to
be faithful to the extended branch.

Suppose that f shows I to be faithful to branch section b, that ♦A, i ap-
pears on b, and that we apply the relevant rule to it, generating an extension
of the branch with A, j where j is new. Since I is faithful to b, ♦A is true at
f(i). So there is some w ǫ W , such that f(i)Rw and A is true at w. Let f ′ be
exactly the same as f except that f ′(j) = w. Since all worlds are related to one
another f ′(i)Rf ′(j), and A is true at f ′(j), hence f ′ shows I to be faithful to
the extended branch.

Suppose that f shows I to be faithful to branch section b, that ¬♦A, i ap-
pears on b, and that we apply the relevant rule to it. Since I is faithful to b,
♦A is false at f(i). So there is no w ǫ W , such that f(i)Rw and A is true at
w. Hence in all w′ ǫ W , such that f(i)Rw′, by υ, all w ǫ W , ¬A is true at w as
required.

Completeness:

Suppose A occurs on an open complete branch b and is of the form �B. If
�B, i is on b, then the rule has been applied, and for all j such that j is on b,
B, j is on b. By construction and the induction hypothesis, for all wj , B is true
at wj . Hence �B is true at wi.

Suppose A occurs an on open complete branch b and is of the form ¬�B. If
¬�B, i is on b, then the rule has been applied, and ♦¬B, i is on b. So for some
new j, such that j is on b, ¬B, j is on b. By construction and the induction hy-
pothesis, for some wiRwj , B is false at wj . Hence �B is false at wi, as required.

If A occurs on an open complete branch b, and is of the form ♦B, then the
rule for possibility has been applied to ♦B, i. Thus, for some new j, B, j is on
b. By construction and the induction hypothesis, for some wj , B is true at wj .
Hence ♦B is true at wi, as required.

If A occurs on an open complete branch b and is of the form ¬♦B then the
rule for negated possibility has already been applide to ¬♦B, i. Thus �¬B, i is
on the branch. So for all j such that j is on b, ¬B, j is on b. Therefore there
is no w ǫ W such that wiRw and B is true at w. Thus ♦B is false at wi as
required.

�
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18. *Let α (anti-reflexivity) be the condition: for all w, it is not the case
that wRw. Show that the logic Kα is the same as the logic K. (Hint: think
about the interpretations produced by K-tableaux.)

If an inference is valid in K, it is valid in Kα, because Kα is an extension
of K. If it is invalid in Kα, the tableau for it does not close. Consider an
interpretation induced by an open branch. Examining the rules, it is clear that
there is no line of the form iri on the tableau, so the interpretation is a K

interpretation. Thus Kα and K are the same.
�
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19. *A relation, R, is Euclidean iff, if wRu and wRv then uRv (and also, of
course, vRu). An ǫ-interpretation is one in which R is Euclidean. What tableau
rules are sound and complete for Kǫ? Show that Kǫ is distinct from K, Kρ,
Kσ, Kτ and Kη. (Hint: consider the formula ♦A ⊃ �♦A.)

There is a new rule which is sound and complete for Kǫ:

irj

irk

↓
jrk

krj

Soundness:

The proof is as for K(2.9.6-2.9.7). All we must do is check that the Sound-
ness Lemma still works given the new rules:

Suppose that f shows I to be faithful to b, that irj and irk are on branch
segment b, and that we apply the ǫ rule. Since f(i)Rf(j), f(i)Rf(k) and R is
Euclidean, f(j)Rf(k), and f(k)Rf(j), as required.

Completeness:

Proof as for K, all we must do in addition is check that the interpretation
induced by the open branch b is of the required kind:

Suppose that wiRwj , and wiRwk; then irj and irk occur on an open com-
plete branch b. Then the ǫ rule above has been applied, so jrk and krj also
occur on b. Hence by construction and the induction hypothesis, wjRwk, and
wkRwj , as required.

�

Show that Kǫ is distinct from K, Kρ, Kσ, Kτ and Kη.

We will find a characteristic formula for Kǫ, and then show that it is invalid
in the other logics.
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Characteristic formula:
⊢Kǫ

♦A ⊃ �♦A

¬(♦A ⊃ �♦A), 0
♦A, 0

¬�♦A, 0
♦¬♦A, 0

0r1
A, 1

0r2, 1r2, 2r1
¬♦A, 2
�¬A, 2
¬A, 1
⊗

This formula is not valid in any of the logics above:

0K ♦p ⊃ �♦p

¬(♦p ⊃ �♦p), 0
♦p, 0

¬�♦p, 0
♦¬♦p, 0

0r1
p, 1
0r2

¬♦p, 2
�¬p, 2

The following interpretation shows this inference to be invalid:

W = {w0, w1, w2}

w0Rw1, w0Rw2

vw1
(p) = 1

This can be represented in the following diagram:

w0

w1

p

w2
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0Kρ
♦p ⊃ �♦p

¬(♦p ⊃ �♦p), 0
0r0

♦p, 0
¬�♦p, 0
♦¬♦p, 0
0r1, 1r1

p, 1
0r2, 2r2
¬♦p, 2
�¬p, 2
¬p, 2

The following interpretation shows this inference to be invalid:

W = {w0, w1, w2}

w0Rw1, w0Rw2, w0Rw0, w1Rw1, w2Rw2

vw1
(p) = 1, vw2

(p) = 0

This can be represented in the following diagram:

y

w0

y

w1

p

y

w2

¬p

0Kσ
♦p ⊃ �♦p

¬(♦p ⊃ �♦p), 0
♦p, 0

¬�♦p, 0
♦¬♦p, 0
0r1, 1r0

p, 1
0r2, 2r0
¬♦p, 2
�¬p, 2
¬p, 0

The following interpretation shows this inference to be invalid:

W = {w0, w1, w2}

w0Rw1, w0Rw2, w1Rw0, w2Rw0
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vw1
(p) = 1, vw0

(p) = 0

This can be represented in the following diagram:

w0

¬p

w1

p

w2

0Kτ
♦p ⊃ �♦p

¬(♦p ⊃ �♦p), 0
♦p, 0

¬�♦p, 0
♦¬♦p, 0

0r1
p, 1
0r2

¬♦p, 2
�¬p, 2

The following interpretation shows this inference to be invalid:

W = {w0, w1, w2}

w0Rw1, w0Rw2

vw1
(p) = 1

This can be represented in the following diagram:

w0

w1

p

w2
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0Kη
♦p ⊃ �♦p

¬(♦p ⊃ �♦p), 0
♦p, 0

¬�♦p, 0
♦¬♦p, 0

0r1
p, 1
0r2

¬♦p, 2
�¬p, 2

2r3
¬p, 3

1r4, 3r5
...

The following interpretation shows this inference to be invalid:

W = {w0, w1, w2, w3, w4, w5...}

w0Rw1, w0Rw2, w2Rw3, w3Rw5, w1Rw4...

vw1
(p) = 1, vw3

(p) = 0

This can be represented in the following diagram:

w0

w1 p w2

w4
...

w3 ¬p

w5
...

The characteristic formula valid in Kǫ, is not valid in the other logics under
consideration. Therefore, Kǫ is distinct from all the systems above.

�
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20. *Show that if a relation is reflexive and Euclidean then it is (a) symmet-
ric and (b) transitive. Infer that Kρǫ, Kρσǫ, Kρǫτ , and Kǫρστ are all the same.
Infer also that Kρτ is a subsystem of Kρǫ. Show that the converse is false.

Suppose that R is reflexive and Euclidean:

R is symmetric: Suppose that xRy. Then xRx by reflexivity. So yRx by
Euclidianness.

R is transitive: Suppose that xRy and yRz. Then yRx by symmetry. Be-
cause yRx and yRz, by Euclideanness, xRz.

Thus, if a relation is reflexive and Euclidean, it is both symmetric and tran-
sitive.

Part 1: Infer that Kρǫ, Kρσǫ, Kρǫτ , and Kǫρστ are all the same.

If an inference is valid in Kρǫ it is valid in all the extensions of Kρǫ. Kρǫτ ,
Kρσǫ , and Kǫρστ are clearly extensions.

If an inference is invalid for Kρǫ we have a countermodel for it. Because the
R in the countermodel interpretation satisfies the ρ and ǫ constraints, as shown
above, R also satisfies the σ and τ constraints. Therefore the interpretation is
a countermodel in all of the extensions of Kρǫ with σ and τ above.

�

Infer also that Kρτ is a subsystem of Kρǫ, and show the converse is false.

Suppose an inference is invalid in Kρǫ Consider an open branch of the
tableau. The interpretation induced by that branch is a Kρτ interpretation,
by the reasoning above. So the inference is also invalid in Kρτ

The converse is false — Kρǫ is not a subsystem of Kρτ . This can be shown
by finding an inference that is valid in Kρǫ, and invalid in Kρτ .

The characteristic inference for ǫ will do the trick:

⊢Kǫ
♦A ⊃ �♦A (shown above)

0Kρτ
♦p ⊃ �♦p:
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¬(♦p ⊃ �♦p), 0
0r0

♦p, 0
¬�♦p, 0
♦¬♦p, 0
0r1, 1r1

p, 1
0r2, 2r2
¬♦p, 2
�¬p, 2

p, 2

The following interpretation shows this inference to be invalid:

W = {w0, w1, w2}

w0Rw1, w0Rw2, w0Rw0, w1Rw1, w2Rw2

vw1
(p) = 1, vw2

(p) = 0

This can be represented in the following diagram:

y

w0

y

w1

p

y

w2

¬p

Because Kρǫ makes an inference valid that Kρτ does not, Kρǫ is not a sub-
system of Kρτ .

�
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