Solutions

Louis Barson Kyoto University

February 2, 2009

1. Prove that the truth value of $\neg \Box A$ at a world is the same as that of $\Diamond \neg A$.

 $v_w(\neg \Box A) = 0$

 $\begin{array}{l} \text{iff } v_w(\Box A) = 1 \\ \text{iff for all } w' \text{ such that } wRw', \, v_{w'}(A) = 1 \\ \text{iff for all } w' \text{ such that } wRw', \, v_{w'}(\neg A) = 0 \\ \text{iff } v_w(\Diamond \neg A) = 0 \end{array}$

2. Show the following. Where the tableau does not close, use it to define a countermodel, and draw this, as in 2.4.8

 $(\mathbf{a}) \vdash (\Box A \land \Box B) \supset \Box (A \land B)$

$$(\Box A \land \Box B), 0$$

$$\neg \Box (A \land B), 0$$

$$\Box B, 0$$

$$\Diamond \neg (A \land B), 0$$

$$0r1$$

$$\neg (A \land B), 1$$

$$\neg A, 1 \quad \neg B, 1$$

$$A, 1 \quad B, 1$$

$$\otimes \quad \otimes$$

$$(\Box A \lor \Box B), 0$$

$$\neg \Box (A \lor B), 0$$

$$\Diamond \neg (A \lor B), 0$$

$$0r1$$

$$\neg (A \lor B), 1$$

$$\neg A, 1$$

$$\neg B, 1$$

$$\Box A \Box B$$

$$A, 1 B, 1$$

$$\otimes \otimes$$

 $(\mathbf{c}) \vdash \Box A \equiv \neg \Diamond \neg A$

$$\neg (\Box A \equiv \neg \Diamond \neg A), 0$$

$$\Box A, 0 \quad \neg \Box A, 0$$

$$\neg \neg \Diamond \neg A, 0 \quad \neg \Diamond \neg A, 0$$

$$\Diamond \neg A, 0 \quad \Diamond \neg A, 0$$

$$\neg \Box A, 0 \quad \Diamond \neg A, 0$$

$$\otimes$$

 $(\mathbf{d}) \vdash \Diamond A \equiv \neg \Box \neg A$

$$\neg (\Diamond A \equiv \neg \Box \neg A), 0$$

$$\Diamond A, 0 \qquad \neg \Diamond A, 0$$

$$\neg \neg \Box \neg A, 0 \qquad \neg \Box \neg A, 0$$

$$\Box \neg A, 0 \qquad \Box \neg A, 0$$

$$\neg \Diamond A, 0 \qquad \otimes$$

$$\otimes$$

$$\neg (\Diamond (A \land B) \supset (\Diamond A \land \Diamond B)), 0$$

$$\Diamond (A \land B), 0$$

$$\neg (\Diamond A \land \Diamond B), 0$$

$$\neg (\Diamond A \land \Diamond B), 0$$

$$\neg \neg \langle A, 0 \qquad \neg \Diamond B, 0$$

$$\Box \neg A, 0 \qquad \Box \neg B, 0$$

$$0r1 \qquad 0r1$$

$$A \land B, 1 \qquad A \land B, 1$$

$$A, 1 \qquad B, 1 \qquad B, 1$$

$$\neg A, 1 \qquad \neg B, 1$$

$$\otimes \qquad \otimes$$

 $(\mathbf{f}) \vdash \Diamond (A \lor B) \supset (\Diamond A \lor \Diamond B)$

$$\neg(\Diamond(A \lor B) \supset (\Diamond A \lor \Diamond B)), 0$$

$$\Diamond(A \lor B), 0$$

$$\neg(\Diamond A \lor \Diamond B), 0$$

$$\neg \Diamond A, 0$$

$$\neg \Diamond B, 0$$

$$\Box \neg A, 0$$

$$\Box \neg B, 0$$

$$0r1$$

$$A \lor B, 1$$

$$\neg A, 1$$

$$\neg B, 1$$

$$\Diamond B, 1$$

$$\neg A, 1$$

$$\neg B, 1$$

$$\Diamond B, 1$$

$$\neg A, 1$$

$$\neg B, 1$$

$$\Diamond B, 1$$

$$\neg A, 1$$

$$\neg B, 1$$

$$\Diamond B, 1$$

$$\neg A, 1$$

$$\neg B, 1$$

$$\Diamond B, 1$$

$$\neg A, 1$$

$$\neg B, 1$$

$$\neg A, 3$$

$$\neg A, 3$$

$$\neg A, 0$$

$$\neg A \lor B, 1$$

$$\neg A, 3$$

$$\neg A, 3$$

$$\neg A, 3$$

$$\neg A \lor B, 1$$

$$\neg A, 3$$

$$\neg A, 4$$

$$\neg A, 3$$

$$\neg A, 5$$

$$\neg A,$$

$$\Box(A \supset B), 0$$

$$\neg(\Diamond A \supset \Diamond B), 0$$

$$\Diamond A, 0$$

$$\neg \Diamond B, 0$$

$$\Box \neg B, 0$$

$$0r1$$

$$A, 1$$

$$A \supset B, 1$$

$$\neg B, 1$$

$$\neg A, 1$$

$$B, 1$$

$$\odot \otimes$$

(h) $\Box A, \Diamond B \vdash \Diamond (A \land B)$

$$\begin{array}{c} \Box A, 0 \\ \Diamond B, 0 \\ \neg \Diamond (A \land B), 0 \\ \Box \neg (A \land B), 0 \\ 0 r1 \\ B, 1 \\ A, 1 \\ \neg (A \land B), 1 \\ \hline \neg A, 1 \quad \neg B, 1 \\ \otimes \quad \otimes \end{array}$$

 $(\mathbf{i}) \vdash \Box A \equiv \Box(\neg A \supset A)$

$$\neg (\Box A \equiv \Box (\neg A \supset A)), 0$$

$$\Box A, 0 \qquad \neg \Box A, 0$$

$$\neg \Box (\neg A \supset A), 0 \qquad \Box (\neg A \supset A), 0$$

$$\Diamond \neg (\neg A \supset A), 0 \qquad \Diamond \neg A, 0$$

$$0r1 \qquad 0r1$$

$$\neg (\neg A \supset A), 1 \qquad \neg A, 1$$

$$A, 1 \qquad \neg A, 1$$

$$\neg A, 1 \qquad \neg \neg A, 1 \qquad A, 1$$

$$\otimes \qquad A, 1 \qquad \otimes$$

$$\otimes$$

 $(\mathbf{j}) \vdash \Box A \supset \Box (B \supset A)$

$$\neg (\Box A \supset \Box (B \supset A)), 0$$
$$\Box A, 0$$
$$\neg \Box (B \supset A), 0$$
$$\Diamond \neg (B \supset A), 0$$
$$0r1$$
$$\neg (B \supset A), 1$$
$$B, 1$$
$$\neg A, 1$$
$$A, 1$$
$$\otimes$$

 $(\mathbf{k}) \vdash \neg \Diamond B \supset \Box(B \supset A)$

$$\begin{array}{c} \neg(\neg \Diamond B \supset \Box(B \supset A)), 0 \\ \neg \Diamond B, 0 \\ \neg \Box(B \supset A), 0 \\ \bigcirc \neg(B \supset A), 0 \\ \Box \neg B, 0 \\ 0r1 \\ \neg(B \supset A), 1 \\ B, 1 \\ \neg A, 1 \\ \neg B, 1 \\ \otimes \end{array}$$

$$\begin{array}{c} \neg (\Box (p \lor q) \supset (\Box p \lor \Box q)), 0 \\ \Box (p \lor q), 0 \\ \neg (\Box p \lor \Box q), 0 \\ \neg \Box p, 0 \\ \neg \Box q, 0 \\ \Diamond \neg p, 0 \\ \Diamond \neg q, 0 \\ 0 r1 \\ \neg p, 1 \\ p, 1 \quad q, 1 \\ \otimes \quad 0 r2 \\ \neg q, 2 \\ p \lor q, 2 \\ p \lor q, 2 \\ \otimes \end{array}$$

The following interpretation shows this inference to be invalid:

$$W = \{w_0, w_1, w_2\}$$
$$w_0 R w_1, w_0 R w_2$$
$$v_{w_1}(p) = 0, v_{w_1}(q) = 1, v_{w_2}(p) = 1, v_{w_2}(q) = 0$$

(m) $\Box p, \Box \neg q \nvDash \Box (p \supset q)$

$$\begin{array}{c} \Box p, 0 \\ \Box \neg q, 0 \\ \neg \Box (p \supset q), 0 \\ \Diamond \neg (p \supset q), 0 \\ 0r1 \\ \neg (p \supset q), 1 \\ p, 1 \\ \neg q, 1 \\ p, 1 \\ \neg q, 1 \end{array}$$

The following interpretation shows this inference to be invalid:

$$W = \{w_0, w_1\}$$
$$w_0 R w_1$$
$$v_{w_1}(p) = 1, v_{w_1}(q) = 0$$

$$\begin{array}{c} w_0 \\ \downarrow \\ w_1 \\ p, \neg q \end{array}$$

(n) $\Diamond p, \Diamond q \nvDash \Diamond (p \land q)$

$$\begin{array}{c} \Diamond p, 0 \\ \Diamond q, 0 \\ \neg \Diamond (p \land q), 0 \\ \Box \neg (p \land q), 0 \\ 0 r1 \\ p, 1 \\ \neg (p \land q), 1 \\ \hline \neg p, 1 \\ \neg q, 1 \\ \otimes \\ 0 r2 \\ q, 2 \\ \neg (p \land q), 2 \\ \hline \neg p, 2 \\ \neg q, 2 \\ \otimes \end{array}$$

The following interpretation shows this inference to be invalid:

$$W = \{w_0, w_1, w_2\}$$
$$w_0 R w_1, w_0 R w_2$$
$$v_{w_1}(p) = 1, v_{w_1}(q) = 0, v_{w_2}(p) = 0, v_{w_2}(q) = 1$$

(o) $\nvdash \Box p \supset p$

$$\neg(\Box p \supset p), 0$$
$$\Box p, 0$$
$$\neg p, 0$$

The following interpretation shows this inference to be invalid:

$$W = \{w_0\}$$
$$v_{w_0}(p) = 0$$

This can be represented in the following diagram:

$$w_0 \\ \neg p$$

 $(\mathbf{p}) \nvDash \Box p \supset \Diamond p$

$$\neg(\Box p \supset \Diamond p), 0$$
$$\Box p, 0$$
$$\neg \Diamond p, 0$$
$$\Box \neg p, 0$$

The following interpretation shows this inference to be invalid:

 $W = \{w_0\}$

$$w_0$$

(q) $p \nvDash \Box p$

$$\begin{array}{c} p, 0 \\ \neg \Box p, 0 \\ \Diamond \neg p, 0 \\ 0r1 \\ \neg p, 1 \end{array}$$

The following interpretation shows this inference to be invalid:

$$W = \{w_0, w_1\}$$
$$w_0 R w_1$$
$$v_{w_0}(p) = 1, v_{w_1}(p) = 0$$

This can be represented in the following diagram:

$$\begin{array}{c} w_0 \ p \\ \downarrow \\ w_1 \\ \neg p \end{array}$$

$$(\mathbf{r}) \nvDash \Box p \supset \Box \Box p$$

$$\begin{array}{c} \neg (\Box p \supset \Box \Box p), 0 \\ \Box p, 0 \\ \neg \Box \Box p, 0 \\ \Diamond \neg \Box p, 0 \\ 0 r1 \\ \neg \Box p, 1 \\ \Diamond \neg p, 1 \\ p, 1 \\ 1r2 \\ \neg p, 2 \end{array}$$

The following interpretation shows this inference to be invalid:

$$W = \{w_0, w_1, w_2\}$$
$$w_0 R w_1, w_1 R w_2$$
$$v_{w_1}(p) = 1, v_{w_2}(p) = 0$$

This can be represented in the following diagram:

$$\begin{array}{c} w_0 \\ \downarrow \\ w_1 p \\ \downarrow \\ w_2 \\ \neg p \end{array}$$

(s) $\nvdash \Diamond p \supset \Diamond \Diamond p$

$$\begin{array}{c} \neg(\Diamond p \supset \Diamond \Diamond p), 0 \\ \Diamond p, 0 \\ \neg \Diamond \Diamond p, 0 \\ \Box \neg \Diamond p, 0 \\ 0r1 \\ p, 1 \\ \neg \Diamond p, 1 \\ \Box \neg p, 1 \end{array}$$

The following interpretation shows this inference to be invalid:

$$W = \{w_0, w_1\}$$
$$w_0 R w_1$$
$$v_{w_1}(p) = 1$$

```
\begin{array}{c} w_0 \\ \downarrow \\ w_1 \\ p \end{array}
```

 $(\mathbf{t}) \nvDash p \supset \Box \Diamond p$

$$\begin{array}{c} \neg(p \supset \Box \Diamond p), 0 \\ p, 0 \\ \neg \Box \Diamond p, 0 \\ \Diamond \neg \Diamond p, 0 \\ 0r1 \\ \neg \Diamond p, 1 \\ \Box \neg p, 1 \end{array}$$

The following interpretation shows this inference to be invalid:

 $W = \{w_0, w_1\}$ $w_0 R w_1$ $v_{w_0}(p) = 1$

This can be represented in the following diagram:

```
\begin{array}{c} w_0 \ p \\ \downarrow \\ w_1 \end{array}
```

```
(\mathbf{u}) \nvDash \Diamond p \supset \Box \Diamond p
```

$$\begin{array}{c} \neg (\Diamond p \supset \Box \Diamond p), 0 \\ \Diamond p, 0 \\ \neg \Box \Diamond p, 0 \\ \Diamond \neg \Diamond p, 0 \\ 0 \\ 0 \\ r1 \\ p, 1 \\ 0 \\ r2 \\ \neg \Diamond p, 2 \\ \Box \neg p, 2 \end{array}$$

The following interpretation shows this inference to be invalid:

$$W = \{w_0, w_1, w_2\}$$
$$w_0 R w_1, w_0 R w_2$$
$$v_{w_1}(p) = 1$$

This can be represented in the following diagram:

 $(\mathbf{v}) \nvDash \Diamond (p \lor \neg p)$

$$\neg \Diamond (p \lor \neg p), 0$$
$$\Box \neg (p \lor \neg p), 0$$

The following interpretation shows this inference to be invalid:

 $W = \{w_0\}$

This can be represented in the following diagram:

 w_0

4. *Check the details omitted in 2.9.3 and 2.9.6.

2.9.3 Soundness Lemma: Let b be any branch of a tableau, and $I = \langle W, R, v \rangle$ be any interpretation. If I is faithful to b, and a tableau rule is applied to it, then it produces at least one extension, b', such that I is faithful to b'.

Proof:

The proof proceeds by a case-by-case consideration of the tableau rules. $A \vee B$, $A \supset B$, $A \equiv B$, $\neg \neg A$, and $\neg \Box A$ have not been explicitly dealt with.

$A \vee B$

Suppose I is faithful to b and $A \vee B$, i occurs on b, and that we apply a rule to it. Then two branches eventuate - one extending b with A, i (the left branch) and one extending b with B, i (the right branch). Since I is faithful to b it makes every formula on b true - in particular $A \vee B$ is true at f(i), that is, $v_{w_i}(A \vee B) = 1$, so either A or B is true at f(i): i.e. $v_{w_i}(A) = 1$ or, $v_{w_i}(B) = 1$.

In the first case, I is faithful to the left branch; in the second case I is faithful to the right branch.

Suppose I is faithful to b and $\neg(A \lor B)$, i occurs on b, and that we apply a rule to it. Then one branch eventuates - extending b with $\neg A$, i and $\neg B$, i. Since I is faithful to b it makes every formula on b true - in particular $v_{w_i}(\neg(A \lor B)) = 1$ so $v_{w_i}(A) = 0$ and, $v_{w_i}(B) = 0$, making I faithful to the extended branch.

$A \equiv B$

Suppose I is faithful to b and $A \equiv B, i$ occurs on b, and that we apply a rule to it. Then two branches eventuate - one extending b with A, i and B, i (the left branch) and one extending b with $\neg A, i$ and $\neg B, i$ (the right branch). Since I is faithful to b it makes every formula on b true - in particular $v_{w_i}(A \equiv B) = 1$ so $v_{w_i}(A) = v_{w_i}(B)$. That is, either $v_{w_i}(A) = 1$ and $v_{w_i}(B) = 1$ or, $v_{w_i}(A) = 0$ and $v_{w_i}(B) = 0$. In the first case, I is faithful to the left branch, in the second case I is faithful to the right branch.

Suppose I is faithful to b and $\neg(A \equiv B)$, i occurs on b, and that we apply a rule to it. Then two branches eventuate - one extending b with A, i and $\neg B$, i (the left branch) and one extending b with $\neg A$, i B, i (the right branch). Since I is faithful to b it makes every formula on b true - in particular $v_{w_i}(\neg(A \equiv B)) = 1$ so $v_{w_i}(A) \neq v_{w_i}(B)$. That is, either $v_{w_i}(A) = 1$ and $v_{w_i}(B) = 0$ or, $v_{w_i}(A) = 0$ and $v_{w_i}(B) = 1$. In the first case, I is faithful to the left branch, in the second case I is faithful to the right branch.

$\neg \neg A$

Suppose I is faithful to b and $\neg \neg A$, i occurs on b, and that we apply a rule to it. Then just one branch eventuates: extending b with A, i. Since I is faithful to b it makes every formula on b true - in particular $v_{w_i}(\neg \neg A) = 1$ so $v_{w_i}(A) = 1$. Thus I is faithful to the extended branch.

$\neg \Box A$

Suppose I is faithful to b and $\neg \Box A$, i occurs on b, and that we apply a rule to it. Then just one branch eventuates: extending b with $\Diamond \neg A$, i. Since I is faithful to b it makes every formula on b true - in particular $v_{w_i}(\neg \Box A) = 1$. By the proof in question 1, this implies that $v_{w_i}(\Diamond \neg A) = 1$. Thus I is faithful to the extended branch.

2.9.6 Finish the proof of the Completeness Lemma: The atomic case, $B \lor C$, $\Box B$, and $\neg \Box B$ have already been shown.

Completeness Lemma: Let b be any open complete branch of a tableau. Let $I = \langle W, R, v \rangle$ be the interpretation induced by b. Then:

if A, i is on b then A is true at w_i if $\neg A$, i is on b then A is false at w_i

Proof:

The proof is by recursion on the complexity of A.

$\neg(B \lor C)$

If A occurs on b, and is of the form $\neg(B \lor C)$, then the rule for disjunction has been applied to $\neg(BvC)$, i. Thus, $\neg B$, i and $\neg C$, i are on b. By induction hypothesis, both $\neg B$ and $\neg C$ are true at w_i . Hence $(B \lor C)$ is false at w_i , as required.

$B \wedge C$

If A occurs on b, and is of the form $B \wedge C$, then the rule for conjunction has been applied to $B \wedge C$, i. Thus, B, i and C, i are on b. By induction hypothesis, both B and C are true at w_i . Hence $B \wedge C$ is true at w_i , as required.

$\neg (B \land C)$

If A occurs on b, and is of the form $\neg(B \land C)$, then the rule for conjunction has been applied to $\neg(B \land C)$, i. Thus, $\neg B$, i or $\neg C$, i is on b. By induction hypothesis, either $\neg B$ or $\neg C$ is true at w_i . Hence $B \land C$ is false at w_i , as required.

$B\supset C$

If A occurs on b, and is of the form $B \supset C$, then the rule for the conditional has been applied to $B \supset C, i$. Thus, $\neg B, i$ or C, i is on b. By induction hypothesis, either $\neg B$ or C is true at w_i . Hence $B \supset C$ is true at w_i , as required.

$\neg(B\supset C)$

If A occurs on b, and is of the form $\neg(B \supset C)$, then the rule for the conditional has been applied to $\neg(B \supset C)$, i. Thus, B, i and $\neg C, i$ are on b. By induction hypothesis, both B and $\neg C$ are true at w_i . Hence $B \supset C$ is false at w_i , as required.

$B\equiv C$

If A occurs on b, and is of the form $B \equiv C$, then the rule for equivalence has been applied to $B \equiv C, i$. Thus, B, i and C, i, or $\neg B, i$ and $\neg C, i$ are on b. By induction hypothesis, either B and C, or $\neg B$ and $\neg C$ are true at w_i . Hence $B \equiv C$ is true at w_i , as required.

$\neg(B\equiv C)$

If A occurs on b, and is of the form $\neg(B \equiv C)$, then the rule for equivalence has been applied to $\neg(B \equiv C)$, i. Thus, B, i and $\neg C, i$, or $\neg B, i$ and C, i are on b. By induction hypothesis, either B and $\neg C$, or $\neg B$ and C are true at w_i . Hence $(B \equiv C)$ is false at w_i , as required.

$\neg \neg B$

If A occurs on b, and is of the form $\neg \neg B$, then the rule for double negation has been applied to $\neg \neg B$, *i*. Thus, B, i is on b. By induction hypothesis, B is true at w_i . Hence $\neg B$ is false at w_i , as required.

$\Diamond B$

If A occurs on b, and is of the form $\Diamond B$, then the rule for possibility has been applied to $\Diamond B, i$. Thus, for some j such that iRj is on b, B, j is on b. By construction and the induction hypothesis, for some w_j such that $w_i R w_j$, B is true at w_j . Hence $\Diamond B$ is true at w_i , as required.

$\neg \Diamond B$

If A occurs on b, and is of the form $\neg \Diamond B$, then the rule for possibility has been applied to $\neg \Diamond B, i$. Thus, $\Box \neg B, i$ is on b. So, for all j such that $iRj, \neg B, j$ is on b. By induction hypothesis, for all j such that $w_i R w_j$, B is false at w_j . Hence $\Diamond B$ is false at w_i , as required.

	I
	I