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Logic as applied Mathematics  with Particular

Application to the Notion of Logical Form

Abstract. The word ‘logic’ has many senses. Here we will understand it
as meaning an account of what follows from what and why. With contem-
porary methodology, logic in this sense  though it may not always have
been thought of in this way  is a branch of applied mathematics. This has
various implications for how one understands a number of issues concerning
validity. In this paper I will explain this perspective of logic, and explore
some of its consequences with respect to the notion of logical form.
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1. Introduction

The word ‘logic’ has many meanings. Perhaps the most standard mean-
ing amongst modern logicians is what follows from what, and why. That,
at any rate, is how I will understand it in what follows.1 Though it may
not always be thought of in this way, the modern study of logic is a
branch of applied mathematics.2 The study of logic has not normally
been thought of in this way. Thus, in particular, it almost inverts a
logicist view of mathematics, which takes pure mathematics to be (part
of) logic.3 Unsurprisingly, then, looking at logic in this way puts a

1 For further discussion of the matter, see (Priest, 2014).
2 In fact, I think it has always been this, though the sophistication of modern

mathematics and its application to logic have made the matter patent. Medieval
European logic provides an especially interesting case in this context, since technical
Latin had been stylized to such a point that it had almost become a formal language.

3 I owe this observation to a referee for this journal.
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number of issues in the philosophy of logic in a distinctive perspective.
In this essay I will explain the view that logic is a branch of applied
mathematics, and explore some of its consequences with respect to the
notion of logical form and related matters. I shall be concerned here
with deductive logic only. Much (though not all) of what I will have to
say carries over to non-deductive logic. However, a discussion of this is
appropriate for another occasion.

2. Applying Mathematics

2.1. Pure and Applied Mathematics

To start with, let us reflect on applied mathematics itself.4 Pure math-
ematics is the study of a variety of mathematical structures in and of
themselves: topologies, geometries, number systems, and so on. In con-
temporary mathematics, these would normally be specified axiomati-
cally, though, outside of geometry, the axiomatic method is a relatively
modern methodology.

Applied mathematics is the use of a pure mathematical structure to
investigate some non-mathematical topic, in physics, biology, economics,
and so on. Of course, the developments of some pure mathematical
structures were entangled with particular applications. Thus, the de-
velopment of Euclidean geometry was integrally connected with what
we might call its canonical application: the structure of space; and the
infinitesimal calculus was integrally connected (at least in Newton) with
its application to physical change. Indeed, these integrations were so
intimate that it was hard to make the conceptual distinction between
the mathematical structure an its application. But Kant notwithstand-
ing, we now know better. Though Euclidean geometry is a perfectly fine
pure mathematical structure, we now take it that it is not the correct
one for the canonical application of geometry. The correct geometry
for analysing the structure of space(-time) is not even one of constant
curvature. Of course, a pure mathematical structure may have many
applications, and Euclidean geometry may still be the correct mathe-
matical structure for other applications  for example, local surveying.
And some pure mathematical structures may have no applications at all:
the theory of large infinities and the theory of surreal numbers are cases

4 For more on the following, see (Priest, 2022).
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in point. At least, they have no applications at present: some pure math-
ematical structures were investigated independently of any application,
and were found to have one only later: for example, complex analysis
in the theory of electricity, and group theory in Special Relativity. In
the end, whether a pure mathematical structure has an application, and
what the correct pure mathematical structure for any application is, are
a matter of a posteriori discovery.

2.2. Applying Mathematics: an Example

So how does one apply a pure mathematical structure? Let us look at
an example from physics. This uses Ohm’s law to determine the current
in a circuit. Suppose we have a simple electrical circuit with a battery
and a resistor.

v

i

>

r

If the voltage, v, produced by the battery is 6 volts, and the resistance,
r, of the resistor is 2 ohms. What current, i (in amps), flows? Ohm’s
law, v = ri, tells us that it is 3. What is going on here?

First, we start with a state of affairs in the physical world. This will
involve some wires and other bits of electrical paraphernalia. Under-
standing what is going on, and making predictions about it, will involve
the following steps. (The sequence here is not a temporal one.) First,
we need to invoke three (theoretical) physical quantities: the current
flowing, I, the resistance, R, and the voltage in the circuit, V . Call
the set of physical quantities, P. Next, these have to be assigned some
mathematical values. Hence, there are three functional expressions, µi,
µr, µv, such that µi means ‘the value in amps of’, µr means ‘the value in
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ohms of’, and µv means ‘the value in volts of’. (I will omit the subscripts
on ‘µ’ if they are clear from the context.) In our case, the mathematical
values are real numbers, members of R. So the denotation of each µ is a
map from P to R. We can now enunciate Ohm’s Law:

• ∀V, R, I(F(V, R, I) → µ(V ) = µ(R) × µ(I))

where F(V, R, I) states that V , R, and I are the quantities in an electrical
circuit. Finally, we have to determine exactly how the mathematical
entities and the operations on them work. In the case at hand, this
is provided by the mathematical structure of the (classical) reals, R,
〈R, +, ×, 0, 1, <〉.

Now, in our present example, we have three particular quantities,
V0, R0, and I0, such that F(V0, R0, I0). Hence applying Ohm’s Law, we
have µ(V0) = µ(R0) × µ(I0). We also have µ(V0) = 6 and µ(R0) = 2.

If we now choose new terms, v, r, and i, for µ(V0), µ(R0), and µ(I0),
respectively, we have the equations:

• v = r × i

• v = 6
• r = 2

Moving to the pure mathematical level, if these statements hold in R

then so does i = 3. So, moving back to the empirical level again, µ(I0) =
3. That is, the current in the circuit is 3 ohms.

2.3. The General Picture

Bearing our example in mind, the general schema for applying a pure
mathematical structure is as follows.

Let us call the topic to which we are applying mathematics, for want
of a better phrase, the “real world”. The real-world state of affairs will
concern various real-world entities. The situation describing these and
the laws governing them can be expressed by a set of statements, D.
Pure mathematical statements, D′, concerning some structure, A, are
abstracted from these statements, ignoring the “real world” interpreta-
tion of the mathematical quantities. Using what we know about A, we
can infer some other statements, E′, that hold in the structure. These
can be “de-abstracted”, bringing the “real world” interpretation back
into the picture, to deliver some descriptions of the real-world situation,
E. We may depict this as in Figure 1.
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What takes us from D′ to E′ in this procedure is pure mathematics:
proofs concerning A. The rest of the picture is a matter of a posteriori
discovery. That this is so in the case of the scientific laws involved is,
of course, clear. But the finding of an appropriate mathematical struc-
ture, A, is, in principle, equally an a posteriori matter. This is exactly
what the situation concerning the replacement of Euclidean geometry by
Riemannian geometry in the theory of space(-time) showed us.

The mathematical structure applied, A, provides us, in effect, with a
theory about the “real world”. Thus, Euclidean geometry and a Rieman-
nian geometry, when given their canonical application, deliver theories
of the structure of space(-time). Of course, such a theory may be inter-
preted in a number of different ways. One may interpret it realistically,
in a certain sense. That is, the real world entities have a structure which
is tracked by the mathematical structure. One may take it purely instru-
mentally. That is, the mathematics is no more than a convenient com-
putation device, which seems to give the right results. Or  somewhere
in between these two  one may think of the mathematics as providing
a model of the real-world situation: one which tracks certain features of
the real-world situation, but which ignores others, maybe in the cause of
simplicity and tractability. How best to understand the theory delivered
by a pure mathematical structure will depend on one’s philosophical
proclivities and case by case consideration.



448 Graham Priest

3. Logic as Applied Mathematics

3.1. Pure and Applied Logic

Let us now turn to logic. A pure logic is a mathematical structure, L.
There is a multitude of such logics (classical, intuitionist, paraconsistent,
etc). Each comprises a formal language, L, a consequence relation, ⊢,
defined on sentences of L, and possibly other machinery. In general
⊢ ⊆ ℘(L) × ℘(L), but for our purposes we need be concerned only with
consequence relations where the first component is a finite set, and the
second is a singleton. L may be specified proof theoretically, model
theoretically, algebraically, or in some other way. The pure mathemat-
ical structure may establish the equivalence between different charac-
terisations, and other important properties of ⊢, such as decidability or
compactness. Qua pure mathematical structure, each logic, like each
geometry, is perfectly in order as it is.

A pure logic may have many applications. It may be applied to
simplify electrical circuits (as with Boolean logic), to parse sentences
(as with the Lambek Calculus). But just as with geometry, logic has
always had what one might call a canonical application: the analysis
of arguments. These are arguments expressed in a vernacular language.
When people argue, be they lawyers, politicians, historians, scientists, or
wot not, they do not do so in a formal language. And, note, this is just as
true of mathematicians. If you open the pages of a mathematics journal
or text book, you will not find the argument presented in Principiaese, or
any other formal language. People argue in a natural language (though
some of the vocabulary used may be of a technical nature). The canonical
application of logic is to evaluate such arguments. That is what it was
originally invented for.

3.2. The Canonical Application of a Pure Logic

How is this done? Suppose we have an argument phrased in a vernacular
language, LV . Let this have premises P1, ...Pn, and conclusion C. We
form the sentence:

• AV : the inference from P1, ...Pn to C is valid.

That is: P1, . . . , Pn entail C.
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The sentences of the language are transformed into sentences µ(P1),
. . . , µ(Pn), µ(C); and AV is transformed into the sentence:

• A : µ(P1), . . . , µ(Pn) ⊢ µ(C)

The translation of vernacular sentences into L is done by a process that is
usually informal, but teachers of elementary logic courses will normally
spend a considerable amount of time developing the required skills in
their students. The appropriate translation may on some occasions itself
be a matter of theoretical contention. (Thus, for example, the standard
translation of a definite description is as a term of L; but according
to Russell’s theory of definite descriptions, the whole sentence in which
it occurs is translated into a sentence which contains no corresponding
noun-phrase.) Next, the mathematical machinery of L is applied to
determine whether A holds in the pure mathematical structure. The
sentence is then “de-abstracted” back to the real world level, to tell us
whether AV holds.

This procedure is an instance of the general schema of 2.3. The real-
world level comprises vernacular arguments. D is a statement of validity
for such an argument. D′ is a corresponding mathematical statement of
L to be proven or refuted, and E′ is the result. E is then the verdict for
the original argument.

3.3. Pure Logic as Theory

As in general for applied mathematics, a pure logic, L constitutes, in
effect, a theory: one of the validity of inferences in the vernacular lan-
guage (or the relevant fragment of it)  though of course, how one should
interpret the theory (realistically, instrumentally, as a model, etc.) will
be subject to the same considerations as before.

Many such theories of validity have been proposed, accepted, and/or
rejected in the history of Western logic: Aristotelian syllogistic, Medieval
(and contemporary) connexive logic, Medieval supposition theory, “clas-
sical” logic, intuitionist logic, paraconsistent logics  to name but a few
of the most obvious ones. And of course, different theories may give dif-
ferent verdicts on various inferences. Thus, if AV concerns the inference:

• Donald Truth is corrupt and Donald Trump is not corrupt, so π is
irrational

and L is classical logic, then it will return the verdict valid. But if L is
a paraconsistent logic, it will return the verdict invalid.
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Given a collection of different theories, the question  one which has
played a major role in contemporary philosophy of logic  then arises as
to which of them is rationally preferable. Primary amongst the consid-
erations for determining the answer is one of adequacy to the data. In
empirical cases, the data is provided by sensory observation and exper-
imentation. In the case of logic it is provided by judgments about the
validity or otherwise of particular inferences.5 Thus:

(1) Mary is wearing a red dress and red shoes; so Mary is wearing a red
dress

strikes us as valid, but:

(2) Mary is wearing either a red dress or red shoes; so Mary is wearing
a red dress

strikes us as invalid. Getting these data points right is a mark in favour
of a theory; getting them wrong is a mark against the theory.

Of course, as in the empirical sciences, data is not infallible. It can
be wrong, and can be shown to be so by an otherwise good theory. Thus,
an aberrant measurement in physical geometry may be taken to show
that our measuring device, or our theory of how it works, is incorrect.
Similarly, our naive judgments about the validity or otherwise of cer-
tain inferences may be wrong. ‘Mary’s dress is red, so Mary’s dress is
coloured’ will strike most of us as valid. But standard logic says that it
is not. What is valid is the inference with the extra premise ‘Whatever
is red is coloured’. Of course, simply writing off an aberrant data point
is bad methodology. Some independent explanation needs to be found.
In the case of the logic example, a natural such explanation is that we
frequently do not mention obvious premises (such as that all red things
are coloured) because they are obvious, and life is short.

In situations of any theoretical complexity, adequacy or otherwise to
the data will not settle the matter. For a start, theories may be equally
adequate or inadequate. In practice, other criteria are also important,
such as simplicity, unifying power, non-reliance on ad hoc hypotheses,
and so on. So it is in logic as well.

In logical investigations of any sophistication, judgments of validity
are embedded in a complex theory of validity, and validity is defined

5 Not, note bene, forms of inference. These are always some kind of theoretical
generalisations.
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in terms of truth, meaning, probability, or something else. The choice
between different theories of this kind is then certain to bring into play,
not only data concerning these notions, but judgments concerning the
other theoretical virtues and how one aggregates all these things; but we
need not go into this matter further here. Suffice it to say that the theory
it is most rational to accept is the one which performs best overall. What
we have here is some kind of abductive inference.6

I note that, despite what might be thought, this does not prejudge the
issue of logical monism vs logical pluralism. Logical pluralism can mean
many things, but perhaps the most interesting is that there are different
notions of logical consequence for the different domains about which we
reason (see, further, Priest, 2006, ch. 12). If this is indeed the case, we
choose the theory which is the best for each domain at issue by the same
procedure. The choice between logical pluralism and logical monism
itself is theoretical choice of a higher-order kind, to be determined by
essentially the same methodology (see, further, Priest, 202x)

The important thing to observe at present is that rational choice
of theory is a fallible and, in a certain sense, an a posteriori one. It
is fallible because the data against which a theory is measured is itself
fallible; and, moreover, new and better theories may appear at any time.
It is a posteriori because its acceptability is to be judged in the light
of data and methodological criteria, not given by certain and infallible
rational intuition.

This does not mean that one has to use sensory information. One can,
of course, sometimes use such information to establish that an inference
is invalid. For some inferences we may be able to see (literally) that the
inference is invalid. For example, consider the inference:

• There are at least two people in the room; so there are a million people
in the room.

where the inference concerns a certain room at a certain time. We may
be able to see that the premise is true and the conclusion is not. But
most cases will not be like this. One may judge that the inference (1) is
valid, merely by thinking about it. In a similar way  though the analogy
is not to be pushed too far  a native English speaker can simply reflect

6 See, further, (Priest, 2016, 2021). This view is often now known as ‘anti-
exceptionalism’. I find this both ugly and potentially misleading. I prefer ‘abduc-
tivism’.
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on the string of words ‘The 45th President of the USA was corrupt’,
to see that it is grammatical, though that this is so is of course an a
posteriori fact about English.

As with the application of a pure mathematical structure in any other
area, then, in our diagram in Figure 1, what takes us from D′ to E′ is
a priori: proof. But finding the right pure mathematical structure to
apply is an a posteriori matter.

4. Logical Form and Related Matters

Let us now turn to how the notion of logical form and related matters
appear from this perspective on logic.

4.1. Logical Constants

Let us start with the notion of a logical constant. The term ‘logical con-
stant’  in Latin, syncategoremata (lit.: something to be combined with
something (else) with a self-standing meaning)  is a term of logician’s
art. The place to find a precise characterisation is, then, in theory; that
is, as applying to notions in a formal language.

How, exactly the syncategorematic notions are picked out will depend
on the theory of validity employed. If the theory is a model-theoretic
one, they will be the parts of the language that have dedicated clauses
in the recursive truth conditions, as in:7

• A ∧ B is true in a structure S iff A is true in S and B is true in S
• ∀xA(x) is true in S iff for all a, A(a) is true in S
• a = b is true in S iff the denotation of a in S is the same as that of b

The other expressions  the categorematic ones  will have only schem-
atic parametric clauses, the denotations of the parameters being provided
by the structure. If the theory is a proof-theoretic one  say in terms of
natural deduction  the syncategorematic notions are the ones that have
specific rules of proof, such as:

A ∀xA a = b

B Ax(a) Ax(a)

A ∧ B Ax(b)

7 The truth conditions for the universal quantifier here assume that every object
in the domain has a name. I make this assumption to keep matters simple.
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The categorematic terms have no specific rules. Of course, whether
one should prefer a model-theoretic account of validity, a proof-theoretic
account, or some other kind, is a matter of having determined the best
theory already.

The notion of a logical constant delivered in this way carries over nat-
urally to notions from the vernacular language. These are those notions
which are represented by the logical constants in the formal language.
That is, those notions which translate into formal logical constants (as
determined by the function µ of 3.2), in the way that ‘and’, ‘all’ and ‘is
identical to’ are normally taken to translate into ∧, ∀, and =. (Though of
course, the formal languages in question may have been designed with an
eye on the fact that these vernacular notions appear to play a ubiquitous
role in reasoning.)

Crucially, what is a logical constant is not to be determined a priori,
but is read off from the logical theory of validity, which is determined a
posteriori, in the way explained. As is to be expected, certain notions
are likely to come out as logical constants under most plausible theories.
There is not going to be much dispute about ‘and’, ‘all’, and nowadays
‘it must be the case that’. ‘is identical to’, ‘it will be the case that’, ‘is
true’, ‘is a natural number’ are, in contemporary logic, more contentious.

4.2. Logical Form

Let us now turn to the matter of logical form itself. As far as the
formal language, L, goes, the matter is relatively straightforward. The
logical form of a sentence is the sentence itself with each non-(logical
constant) replaced (uniformly) by a parameter, that is, a variable of
the appropriate category. Given most usual theories of validity (model-
theoretic, proof-theoretic), parameters play no role in the validity of an
inference. Hence, any two inferences of the same logical form with be
equi-valid.

Matters for a vernacular sentence are slightly less straightforward,
however. Given a logical theory, L, we may define the logical form of a
vernacular sentence, Av, to be the logical form of the sentence, A, of L,
into which it is translated when applying L. Clearly, this logical form is
relative to L. But it might be felt that the logical form should be more
determinate than this. To see why, just consider the inference: ‘John
is happy, so someone is happy’. If L is classical propositional logic, the
inference is of the form p ⊢ q, which is invalid. But if L′ is classical
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first-order logic, the inference is of the form Hj ⊢ ∃xHx, which is valid.
It might well be felt that the sentence of first-order logic better captures
the logical form of the vernacular sentence than does the sentence of
propositional logic.

If so, one may define an absolute notion of logical form for a vernac-
ular sentence as follows. Let us suppose that for every formal language,
L, the correct L is settled. And suppose, as one would expect, that if L′

extends L then L′ and L agree on the validity of inferences couched in
L. One may define the (absolute) logical form of a vernacular sentence
to be the logical form of the sentence of L into which it is translated,
where L is a language such that there is no L′ which extends L and
which changes the validity or otherwise of inferences formed of sentences
in L.8 L is, so to speak, the maximal (relevant) level of analysis of the
sentence. Again, all this is a posteriori, being dependent, as it is, on an
appropriate theory of validity.

4.3. Formal Validity

Let us move from logical form to formal validity.

Given a theory of validity provided by a mathematical structure,
L, let us say that the notion of validity delivered is formal iff any two
inferences with the same logical form are equi-valid. That is, if the forms
of I1 and I2 are the same, both are valid or neither is.

Say that a validity relation is closed under uniform substitution if
whenever C is a constant of some grammatical category, A is something
of that category, and I(C) is a valid inference, then so is I(A). If an
inference relation is closed under uniform substitution, it is formal. For
if I(C1) and I(C2) have the same logical form, I(X)  supposing for
the sake of simplicity that there is only one categorical term  then each
can be obtained by uniform substitution from the other. The converse
does not hold, however, since I(C) and I(A) may have different logical
forms.

Notwithstanding, as observed, usual model theoretic and proof the-
oretic accounts of deductive validity deliver notions of validity closed

8 If there are two such Ls, Li and Lj , there must be agreement about the validity
of inferences in the relevant vocabulary. For we can form the language, Lk, which is
the language whose vocabulary is the union of those of Li and Lj . Ex hypothesi, Li

and Lj agree with Lk on the validity of inferences in the relevant vocabulary, and so
with each other.
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under uniform substitution, and so are formal. This is by no means
required of an account of deductive validity, though. Thus, suppose that
validity is defined as necessary truth preservation. That is, the inference
from P1, ..., Pn to C is valid iff �((P1 ∧ ..., ∧Pn) → C). Given what are
usually taken to be logical constants, the inferences:

• Dana is English, so Dana is British
• Dana is English, so Dana is happy

have the same logical form, but the first is valid and the second is not.
In fact, there are many inferences that appear to be deductively valid

but are not formally valid, such as:

(3) a is red; so a is coloured
(4) a is red; so a is not blue

The Medieval description of such inferences was materially valid.

If one wants to hold that such inferences can be accounted for in terms
of formal validity there are at least two options. The first, and most
standard, is to take them to be enthymematically valid, with suppressed
premises, such as all red things are coloured and nothing is red and blue.

However, such inferences can be taken to be formally valid provided
we take the appropriate terms to be logical constants. What this means
is that in a proof-theoretic theory of validity, they have their own rules
of inference, such as:

a is red a is red
a is not blue a is coloured

In a model-theoretic account, an interpretation will assign these pred-
icates interpretation-independent denotations connected by structural
constraints (in a way that a modal semantics puts constraints on prop-
erties of the accessibility relation). Thus, if red and coloured are repre-
sented in the language L by the predicate constants R and C then the
semantic recursive clauses will be:

• Ra is true in S iff the denotation of a is red
• Ca is true in S iff the denotation of a is coloured

and S will be required to satisfy the constraint that the extension of R is
a subset of the extension of C. Normally, these constraints will be taken
as “meaning postulates”.
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If one decides to eschew a notion of material validity, which of these
two approaches to adopt will depend on the theoretical virtues of each
account.9

5. Conclusion

In this essay I have shown how it is that logic is a branch of applied
mathematics. A pure logic can be applied to evaluate vernacular in-
ferences in the same way that any other pure mathematical structure
can be applied to deliver an account of some “real world” phenomenon.
When thus applied, it delivers a theory of what follows from what and 
if the mathematical structure is sufficiently generous  why. The best
such theory is then to be determined on the basis of the usual criteria of
theory choice.

Such an account provides a distinctive perspective on a number of
issues in the philosophy of logic; notably, as we have seen, on the nature
of logical constants and logical form. In particular, an understanding of
both notions is delivered by our best such theory, whatever, in the end,
that turns out to be.
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