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Abstract

So called classical logic is the logic invented/discovered largely by Frege
and Russell around the turn of the 20th Century, and polished by subsequent
logicians, including Hilbert, Tarski, Gentzen, and others. Non-classical log-
ics are logics that were invented/discovered by logicians in response to var-
ious philosophical inadequacies perceived in classical logic. Though their
origins are also in the start of the 20th century, they witnessed a spectac-
ular—and continuing—development in the second half of the century. The
point of the present paper is to survey the philosophical considerations which
gave rise to non-classical logics, the logics to which they gave rise, and the
philosophical issues to which they, in turn, gave rise.
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1 Introduction: Classical and Non-Classical Logic
The word ‘logic’ can be used in many ways. For the purpose of what follows,
I will understand it as meaning a theory of what follows from what, and why.
That is, an inference has premises and a conclusion (or, in the case of multiple-
conclusion logics, conclusions). A valid inference is one where the premises pro-
vide a ground for the conclusion. A logic is an account of what conclusions follow
validly from what premises—and what do not. Generally, it will do more than this,
however: it will provide an account of why valid inferences are valid—and why
invalid inferences are invalid. Of course, this is a very rough and ready character-
isation of validity. It is the brief of a logical theory to render it more precise.

Theories of logic have been produced for well over two millennia. However,
a significant revolution occurred in the subject around the turn of the 20th Cen-
tury. Resulting from, amongst other things, the drive for rigour in mathematics,
the techniques of modern mathematics were applied to the subject. The theory
that then appeared is now standardly called ‘classical logic’. This was produced
initially and most notably, by Frege and Russell, and subsequently polished by
Hilbert, Tarski, Gentzen, and others. The theory was not called ‘classical logic’
by these thinkers: it was just logic. However, early in the new century, a new kind
of mathematics which rejected certain standard forms of mathematical reasoning
was proposed by Brouwer. More of this in due course. The orthodox mathemat-
ical community required a name for the more traditional kind of mathematics,
and ‘classical’ became standard. Somewhat later, the epithet was transferred to
the logic that was taken by the orthodox to be used in such mathematics—that of
Frege and Russell.

Be that as it may, this theory of logic was so powerful that it soon superseded
the traditional logic that was standard in the 19th Century. Like all theories, how-
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ever, it had clear problems, and no sooner had it appeared than logicians were
applying the newly used mathematical techniques to produce different theories of
logic, aimed at addressing these problems. Such theories have come to be known,
naturally enough, as non-classical logics.

The theories are, loosely speaking, of two kinds. The first aimed to supple-
ment perceived expressive inadequacies of classical logic with new devices which
redress the deficiency. The second, and more radical kind, took certain features of
classical logic simply to be wrong, and aimed to correct these features. The first
kind may be called supplements to classical logic; the second, rivals.1

The worries that prompted non-classical logics were, generally speaking, of a
philosophical kind, and these stimulated many technical novelties. These novel-
ties produced, in turn, many new philosophical issues. That dialectical interplay
is the subject of this essay. The relevant terrain is enormous. One could write a
book on each of the subjects I discuss—and many more that I do not. Of necessity,
then, the coverage in a single essay is selective; but my choices are not arbitrary.
My aim is to cover what I see as the most central issues in the area. Different au-
thors might reasonably have made different choices. However, any such selection
would, I think, have to have at least a very substantial overlap with the material
we will cover.

I will structure the discussion by moving through several different kinds of
non-classical logic, charting the interplay between philosophical and technical
considerations, throwing in a few historical details for context. (Those who want a
glimpse ahead can consult the table of contents.) There are, of course, interactions
between these different kinds of logic, as we shall see. Given the space, it is
impossible to discuss each philosophical issue in any detail. I must content myself
with little more than explaining what it is. At the end of every section I shall give
references where discussion and further references may be found. (The titles tell
their relevance.)

Let me finish this introduction by saying two things that this essay will not be
about—though much of interest could be said about them. First, as noted, many
important logical theories were produced by logicians in the Ancient and Me-
dieval periods of Western philosophy and in Eastern Philosophy. By definition,
these were non-classical logics. Indeed, generally speaking, they were incom-
patible with classical logic, even giving conflicting accounts of which inferences
are valid. (We will have an example of this in due course.) These theories came
with their own techniques and rafts of philosophical issues. However, such things

1The terminology is due to Haack (1974).
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would have to be the subject of entirely different treatises.
Secondly, as is generally agreed, inferences come in two flavours: deductive

and non-deductive (inductive). A deductive inference is one where the premises
cannot (in some sense) be true without the conclusion being true. In a non-
deductive inference, the premises provide some lesser ground. Hence, it can be
the case that A follows from B, but additional premises may undercut the validity
of the inference. Hence, A may not follow from B plus C. (Hence the modern
name for such inferences: non-monotonic.) For reasons that are less than clear,
historically, non-deductive validity has been much less theorised by logicians then
deductive validity. However, some considerable attention has been paid to it in
the last 100 years or so. Again, the various theorisations come with their own raft
of techniques and philosophical problems, concerning probability, normality, and
other matters. And again, such things would have to be the subject of entirely
different treatises. This essay is concerned solely with deductive logic.2

2 Many-Valued Logics: Gaps, Gluts, and Fuzziness
The first family of logics we will look at are many-valued logics. These are rivals
to classical logic.

Classical logic has two truth values: true (and true only), and false (and false
only). But using the standard mathematical tools, one can construct semantics
for logics in which there can be any number of values (finite or infinite). Logics
where there are more than two values are many-valued logics. Given the values of
the logic, an interpretation assigns one of these to each propositional parameter,
and truth functions then assign values to all formulas. Some of the values are
termed designated, and an inference is valid if it preserves designated values in all
interpretations. (true is, of course, a designated value.)

The first person to construct a many-valued logic was Łukasiewicz in 1920.
His was a three-valued logic. Motivated by Aristotle’s arguments about future
contingents, he thought of the third value as possible. However, this makes possi-
bility behave in a very inappropriate way, so let us pass this over. (We will look at
a much more adequate way in the next section.)

Setting the infinite case aside for the moment, it is very hard to find more than
a handful of plausible meanings for the non-classical values. The following are
the ones that are more commonly discussed. The philosophical issues in each case

2Further reading and references: Priest (2014); Kneale and Kneale (1962); Dutilh Novaes
(2020); Gillon (2021); Hawthorne (2019); Strasser (2019).
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concern whether there are statements with such values—or at least, whether such
statements should be accommodated in an account of logical consequence.

Perhaps the most popular non-classical value is neither true nor false, as found
in (strong) Kleene logic, K3. Many candidates for having such a value have been
suggested. The first was by Aristotle himself. Some statements about the future
are already determined as true (e.g., ‘the sun will rise tomorrow’); others are as
yet indeterminate—e.g. (10/11/22), ‘the war in Ukraine will still be going on in
2024’. In important respects, the future is metaphysically open: for some things,
there is presently no fact of the matter. Statements about such “future contingents”
are presently neither true nor false (though they will be so in due course).

A quite different rationale was proposed by Frege. Certain noun-phrases have
no referent. One might think of names in fiction, such as ‘Odysseus’, or infelici-
tous definite descriptions, such as ‘the present king of France’. The truth value of
a sentence containing such a name is a function of the referent of the name, and
since the name has no referent, such a sentence has no truth value. That is, it is
neither true nor false.

Yet a third candidate for sentences with such a value (suggested, e.g., by God-
dard and Routley) are meaningless sentence, such as ‘this stone is thinking about
Vienna’, ‘it is noon at the North pole’, or ‘1/0’. One thing that is distinctive about
meaningless sentences is that one might expect them to behave “infectiously”, as
found in Bochvar logic, B3 (aka, weak Kleene) or Halldén logic, H3 (aka para-
consistent weak Kleene). That is, if such a sentence is a sub-formula of another
sentence, it, too, is meaningless. One might also think that one should just ex-
clude meaningless sentences from logical consideration. The standard reply is
that one cannot do this because (following, e.g., Wittgenstein), such nonsense
may be “hidden”.

A less common, but increasing popular suggestion for a non-classical value is
both true and false, as found in the Logic of Paradox, LP. Again, many candi-
dates for sentences with such a value have been suggested. One concerns motion
(Priest). Consider Zeno’s Paradox of the Arrow. At an instant of its motion, the
progress made by an arrow on its journey is zero. The progress made in the whole
journey is the sum of progresses made at each instant; and a sum of zeros—even
transfinitely many—is zero. So the arrow does not move. The solution (endorsed
by Hegel) is that at an instant the arrow does make some progress. It is where it
is, but since it is in motion, it has already gone a little bit further, and so is not
there. In fact, the difference between an object in motion, and an object at rest at
the same point is precisely that the former realises a contradictory state. It is there
and not there. ‘It is there’ is both true and false.
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One of the most frequently discussed suggestion for sentences with a non-
classical value concerns some other paradoxes: those of self-reference. Take the
liar sentence as an example: this sentence is false. If it is true, it is false; if it is
false it is true. Some have suggested that the sentence is neither true nor false
(Bochvar, Kripke, Field). Others have suggested that it is both true and false
(Halldén, Routley, Priest.) A prima facie advantage of the latter suggestion is that
the former does not escape paradox. Merely consider the “extended” paradox:
this sentence is either false or neither true nor false. To claim that this sentence
is neither true nor false, would be to claim that it is true. Contradiction. Dually,
however, consider the sentence: this sentence is false and not both true and false.
Reasoning in an obvious way, one establishes that it is false only and both true
and false. This is, of course, also a contradiction. But unlike the neither-solution,
the both-solution is not meant to eliminate contradiction, but to tame it.

Yet another paradox which has been invoked to justify non-classical values
is the sorites paradox. These occur for vague predicates, such as ‘is bald’, ‘is
drunk’. Applications of such predicates appear to have clear cases of truth, clear
cases of falsity, and borderline cases, symmetrically poised between the two. It
is often suggested that in borderline cases the resulting sentence is neither true
nor false (Tye, Field) or both true and false (Hyde, Colyvan, Priest). The obvious
problem with either suggestion concerns “higher-order vagueness”. What caused
the original problem is that there is no clear cut-off between true applications and
false applications. But we have now simply multiplied the problem, since there
is no clear cut off point between the applications of each classical value and the
non-classical value (whatever that is).

To handle this problem many (Zadeh, Hájek, Smith) have felt that one should
use an infinite-valued many-valued logic, “fuzzy logic”, where statements can
have any value in the interval of real numbers [0, 1]. Non-integral values are those
of things that are less than fully true or fully false. Using such values, it would
appear that precise cut-off points can be avoided. However, this is not the case,
since in a continuous transition from 0 to 1, there must be a precise cut-off point
between taking the value 0 and taking a value greater than 0. (Similarly for value
1.)

Given any many-valued logic with a designated value which is a fixed point
for negation then, provided that there are some values that are not designated, the
inference of Explosion, A,¬A ` B, is invalid. Logics in which this inference fails
are called paraconsistent.3 Hence some many-valued logics are paraconsistent.

3Derivatively, logics in which the dual inference, A ` B,¬B, fails are sometimes called para-
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There are also paraconsistent logics that are not many-valued. We will meet such
in due course.4

3 Modal Logic: Intensionality and Intentionality
Let us now turn to modal logics, which are normally thought of as supplements to
classical logic, since they incorporate it. (Though, one might note, it is perfectly
possible for a modal logic to have any many-valued logic as its non-modal part,
and so be a rival.)

Modal logics are so called, since they deal with the modes in which things may
be true or false: possibly, impossibly, necessarily. The matter has been discussed
in Western logic since its origins. However, contemporary discussions of the topic
date back to the work of C. I. Lewis, starting just before the First World War. That
is, just a couple of years after the appearance of Russell and Whitehead’s Prin-
cipia Mathematica. Lewis’ concern was not modality as such, however. He was
troubled by the account of conditionality to be found in Principia. This was the
material conditional, A ⊃ B, defined as ¬A ∨ B. If one takes this to represent the
natural-language conditional, one gets such oddities as the validity of the infer-
ences:

• I will have an egg for breakfast tomorrow. Hence if I die tonight I will have
an egg for breakfast tomorrow.

• Canberra is the capital of Australia. Hence, if Sydney is the capital of Aus-
tralia, the capital of Australia is in Germany.

Lewis’ solution was to define a new kind of conditional, J. Writing � for ‘it is
necessary that’, he defined A J B as �(A ⊃ B). We will return to Lewis’ definition
in due course. The developments that ensued took up the investigation of � and
its cognates.

Lewis developed five systems of modal logic S 1–S 5, defined purely axiomat-
ically. The very intelligibility of modal notions was influentially challenged by
Quine and others in the 1950s and 1960s. But matters changed with the discovery
of a systematic semantics for modal logics. The main player in this game was
Kripke. In these semantics, interpretations are furnished with a bunch of objects

complete.
4Further reading and references: Priest (2008), ch. 7 (many-valued logic); Priest (202a);

Gottwald (2015); Cintula, Fermüller, and Noguera (2021).
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called (and thought of as) possible worlds. What is possible at a world may change
from world to world. (In a world where I am currently in Melbourne, it is physi-
cally possible, with current technology, for me to be in Sydney in a few hours. In
the present world, where I am in New York, it is not.) Hence the semantics have
a binary “accessibility relation”, R. wRw′ is taken to mean that at world w, world
w′ is possible. Then:

• �A is true at w iff for all w′ such that wRw′, A is true.

Writing ^ for the dual of �,‘it is possible that’, then:

• ^A is true at w if for some w′ such that wRw′, A is true

Different constraints on R define different modal logics. If no constraints are im-
posed, so that R is arbitrary, we have the logic K, which is not one of the Lewis
systems, though S 4 and S 5 are extensions of it. Systems that are extensions of K
are called normal.

The semantics generate a number of philosophical issues. For start, there are
many clearly different notions of necessity, such as: logical, physical, temporal,
epistemic, deontic, and—many add to the menagerie—metaphysical.

These have different properties. For example, the logic obtained by extending
the semantics of K with the constraint of reflexivity on R (for all w, wRw) verifies
the logical truth of �A ⊃ A. This holds for logical necessity, but not deontic
necessary. (The fact that it is morally necessary (obligatory) for someone to bring
it about that A notoriously does not imply that they do so.) There are philosophical
issues about which modal logic captures a particular notion of necessity. For
example, the characteristic of the Lewis System S 4 is the transitivity of R (if xRy
and yRz then xRz). This verifies the logical truth of �A ⊃ ��A. Does this hold of
epistemic necessity? Is what is known always known to be known?

Next, as a piece of formal apparatus, possible worlds are unproblematic. They
are just a bunch of objects with certain mathematical properties. But what do
such things represent in reality (if anything). That is, what is the metaphysical
status of possible worlds—other than the one which is actual? Some have taken
them to be abstract objects, such as sets of propositions. Some have taken them
to be non-existent objects. Perhaps the idea that has received the most airtime is
that proposed by (David) Lewis, called, for better or for worse, modal realism.
According to this, non-actual possible worlds are physical worlds, just like the
actual world. They just exist in their own space and time, causally isolated from
ours.

8



Taking matters in a different direction: many have held that world semantics
can be used for non-modal notions. One concerns counterfactuals; we will come
to that matter in due course. Another concerns intentional propositional states;
that is, those mental states, such as believing, fearing, hoping, which take as their
objects states of affairs. This raises a whole new bunch of issues. To see what
these are, let us have a couple of quick definitions. A context, C, is extensional if
it satisfies the condition:

• if A ≡ B then C(A) ≡ C(B)

where A ≡ B is (A ⊃ B) ∧ (B ⊃ A). Classical logic is extensional, in that if C is
any context provided by the language, it is extensional. Modal logic is not. Let
A be ‘Nothing accelerates through the speed of light’, and B be ‘The capital of
Australia is Canberra’. Then if � is physical necessity, A ≡ B, but it is not the
case that �A ≡ �B. A context, C, is intensional if it satisfies the condition:

• if |= A ≡ B then C(A) ≡ C(B)

where |= is logical truth. Normal modal logics are intentional, in that if C is any
context provided by the language, it is intensional.

Contexts that are not (extensional or) intensional are called hyperintensional.
And intentional contexts are hyperintensional. Clearly, for example, if A is some
simple logical truth, such as ‘If the sun is shining, it is shining’, and B is some
immensely complex propositional logical truth, with a million independent atomic
sentences, I can believe that A without believing that B. Hence such operators
cannot be accommodated by a normal system of modal logic.

Now, in the Lewis systems S 1, S 2, and S 3, modal operators deliver hyper-
intensional contexts. For example, in all of these, ^(p ∨ ¬p) and �(p ∨ ¬p) are
logical truths. So |= ^(p∨¬p) ≡ �(p∨¬p); but �^(p∨¬p) is a logical truth and
��(p∨¬p) is not. Hence 6|= �^(p∨¬p) ≡ ��(p∨¬p). In Kripke’s semantics for
S 2 and S 3 this matter is handled by having a special class of non-normal worlds
where logical truths may fail.5 Specifically, at such worlds modal operators work
differently from how they work at normal worlds. All things of the form �A are
false, and all things of the form ^A are true. Since non-normal worlds are such
that logical truths may fail at them, it is natural to think of them as impossible
worlds (though Kripke himself never called them this).

5Kripke never produced a semantics for S 1, for which somewhat different semantic techniques
are required.
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In a world semantics, logically impossible worlds would seem to be required
to handle intentional operators. Thus, suppose that Ψ is any such operator. Take
‘Mary believes that’ as an example. And let RΨ be the accessibility relation that
corresponds to it, so that if w is a normal world:

• ΨA is true at w iff for all w′ such that wRΨw′, A is true at w′

Even rational agents may believe things that are not logically true. And, if so,
these w′ must be impossible worlds. (Well, not quite. If w accesses no worlds
then, for all A, ΨA is true vacuously. But let us assume that Mary does not believe
everything.) Hence, intentionality occasions consideration of a semantics in which
there are impossible worlds.6 The advent of impossible world semantics has put
on the table a whole new bunch of problems.

Perhaps the most obvious is whether it is possible to deliver an adequate se-
mantics for hyperintensional operators which do not use worlds—at least impos-
sible worlds. There are many other questions. One that immediately looms is
what to make of the metaphysical status of impossible worlds. Do they have the
same status as possible (non-actual) worlds, or must they be supposed to have a
different kind of status? The answer to that question may (or may not) depend on
what one takes the metaphysical status of possible worlds to be.

The philosophical ideas generate, in turn, various technical questions. Im-
possible worlds of Kripke’s kind are not general enough to handle intentional
contexts, if only because non-modal logical truths hold in all worlds, normal and
non-normal; but even rational (non-ideal) agents do not believe all logical truths
of this kind. And once other intentional operators are on the table, the matter
is patent. If A is of the form p ∨ ¬p, Mary does not have to fear that A, won-
der whether A, hope that A. In other words such worlds are far too constrained.
Once intentional states are on the table, much more logical anarchy is required.
Such anarchy may come by degrees. Thus, a relatively controlled form of anarchy
suffices for the impossible worlds of relevant logic. (See below.) But once inten-
tional states are on the table, complete anarchy would seem to be required, since
real people may believe or fail to believe pretty much any collection of statements.
How should one make philosophical sense of such anarchic worlds?7

6In the early days of investigation, these were sometimes called impossible possible worlds. It
hardly needs to be said that this is unfortunate terminology.

7Further reading and references: Ballarin (2021); Priest (2008), chs. 2-4 (modal logic); Hylton
and Kemp (2019); Berto and Jago (2019), Priest (2008), ch. 11a (many-valued modal logic).
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4 Intuitionistic Logic: Realism and Anti-Realism
Let us turn to our third non-classical logic, which is clearly a rival to classical
logic. This is intuitionist logic. Beginning in the first decade of the 20th century,
Brouwer took issue with certain standard principles of mathematical reasoning,
and started to develop a kind of mathematics which did not use them. Taking the
name from Kant, he called this intuitionism.

Brouwer was motivated by the thought that mathematical objects do not exist
in some abstract platonic realm. They are simply mental constructions. For such
an object to exist, then, is for there to be a mental operation for constructing
it. Now, suppose that we wish to prove that ∃xPx, and assume for reductio that
¬∃xPx. We deduce a contradiction, and so establish that ¬¬∃xPx. We have not
constructed an object satisfying Px. Hence we have not shown that ∃xPx. The
law of double negation in one direction, ¬¬A ` A, therefore fails. Other logical
failures follow, notably the law of excluded middle. For suppose that ∃xPx ∨
¬∃xPx. We have proved ¬¬∃xPx. So by the disjunctive syllogism, ∃xPx would
follow.

Brouwer himself did not formalise a system of logic. Indeed he was skeptical
of formal logic. But an appropriate system of logic, now termed intuitionistic
logic, was produced by Heyting in the 1920s. (And note that this is provably not
a finitely many-valued logic.) This has a number of different semantics. One of
these is a world semantics. What is true at a world is thought of as what has
been proved there; and wRw′ means that what has been proved at w′ extends what
has been proved at w. It is assumed that once something is established, it stays
established. The fact that something fails at w does not imply that it it not true,
since a proof may be found at some “later” w′. And the domain of objects at w′

may extend that of w, as new objects are constructed. The truth conditions for
both negation and the universal quantifier therefore involve a world-shift:8

• ¬A holds at w iff for no w′ such that wRw′, A holds at w′

• ∀xA holds at w iff for all w′ and all objects, a, in the domain of w′, Ax(a)
holds at w′

The most obvious philosophical issue raised by all of this is whether existence
in mathematics really is to be understood in terms of construction. To state one
obvious problem: many apparently legitimate mathematical constructions clearly

8Notation: Ax(a) is A with every free occurrence of x replaced by the constant a; and I use any
object in the domain as its own name.
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outrun actual human ability, for example the decimal expansion of the number
10101010

. If we restrict ourselves to constructions that people can actually do, we
are forced into an ultra finitism incompatible with intuitionist mathematics. We
must, then, take ourselves to be dealing with constructions that are possible in
principle. But what is the principle? Why can there not be a proof, for some P, of
P0, P1, P2, ... and so of ∀xPx? Maybe each proof would take half the time of the
previous one, the impossibility of such a sequence of proofs being (as Russell put
it in a different context9), a mere medical impossibility. But such a construction
would make every true sentence of standard natural-number arithmetic verifiable,
which is again incompatible with intuitionist mathematics.

The concerns of Brouwer and Heyting were specifically about mathematics,
but their views were clearly a form of verificationism. In mathematics verifica-
tion is proof. Verificationism of a more general kind was extended to all of lan-
guage by Dummett in the 1970s. Dummett argued, on generally Wittgensteinian
grounds, that if someone understands the meaning of a sentence, they must be
able to demonstrate a grasp of that meaning. In particular, we demonstrate our
understanding of the meaning of a sentence by being prepared to assert it in those
conditions under which it obtains (and just those). If truth is the kind of thing
that may transcend our ability to recognise it, this is impossible. Hence, mean-
ings must be specified in terms of something which we can recognise as obtaining,
namely the conditions under which a sentence is shown to be true, that is, verified.
Hence Dummett advocated using intuitionist logic for all domains of discourse,
not just mathematics.

This motivation for intuitionist logic clearly raises many philosophical issues.
The first is whether Dummett’s arguments are cogent. One may doubt this. For
a start, why must it always be necessary to be able to manifest a grasp of mean-
ing? Some aspects of meaning might simply be innate, or hard-wired into us, as
Chomsky has argued. And even granting that the grasp of meaning must be man-
ifestable, why does it have to be manifestable in a way as strong as the argument
requires? Why is it not sufficient simply to assent to a sentence when the state of
affairs it describes is manifest, and not when it isn’t?

If Dummett’s arguments are not cogent, the next issue is whether verification-
ism about truth is correct, and whether, indeed, it is a coherent view of the nature
of truth at all. For a notorious objection, consider the claim that something exists
only if its existence can be verified. How could this, itself, be verified? (Note
that this is not a problem for Brouwer, since such is a philosophical claim, not a

9Russell (1935–1936), p. 143.
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mathematical one.)
Other problems are of a more technical kind. As I noted, the world-semantics

assume that once something is verified it stays verified. Perhaps this is a plausible
assumption when the verification is mathematical proof; but it is not so for any
form of empirical verification, which is all too fallible. So the use of intuitionist
logic (or at least its Kripke semantics) is not justified.10

5 Conditionals: Relevant Logics and “Variably Strict”
Conditionals

Let us now return to the subject of conditionals. Arguably, conditionality is and
always has been the most contentious of all the logical notions, where it is seem-
ingly impossible to get all the moving pieces to fit together coherently.

As we noted, classical logic verifies highly counter-intuitive principles of con-
ditionality, such as:

• A |= B ⊃ A

• A |= ¬A ⊃ B

(And so does intuitionist logic.) Lewis’ solution was, as we noted, to define con-
ditionality using a modal operator. A J B is �(A ⊃ B). Substituting J for ⊃ in
the above produces invalid inferences. However, the inferences have valid modal
analogues:

• �A |= B J A

• �A |= ¬A J B

Given the premise, the conclusions hold, since the material conditional is vacu-
ously true at all (possible) worlds. But these examples seem just as problematic.
Where the � is logical necessity, merely consider:

• �(If the sun is shining, then the sun is shining). Hence if all instances of the
law of identity are false, if the sun is shining, the sun is shining.

10Further reading and references: Priest (2008), chs. 6, 20 (intuitionist logic); Iemhoff (2019);
Wright (2018); Glanzberg (2018), esp. §4.
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• �(If the sun is shining, then the sun is shining). Hence if it is not the case
that (if the sun is shining the sun is shining), then the classical account of
the conditional is correct.

Lewis himself, perhaps reluctantly, accepted the validity of these inferences. How-
ever, some later logicians balked.

Writing→ for the conditional, a propositional logic is relevant iff:

• whenever |= A → B, A and B have at least one propositional parameter in
common

Starting in the late 1950s, and drawing on earlier work by Ackermann and Church,
Anderson and Belnap put forward a number of relevant logics. These were speci-
fied in purely proof-theoretic form (with axiom systems or certain kinds of natural
deduction-systems). A decade or two later, various semantics were discovered. Of
these, the most versatile was developed by Routley and Meyer. The semantics are
world-semantics, and the key idea is to have worlds where logical truths fail, and
where logical falsehoods hold. So even if A → A is a logical truth, there may be
impossible worlds where B is true, yet A→ A fails. A conditional is logically true
if it preserves truth at all worlds of all interpretations. Hence, A → A is a logical
truth, B→ (A→ A) fails to be a logical truth.

The impossible worlds are not completely anarchic. Conjunction and disjunc-
tion work standardly. Hence, e.g., A ∧ B is true at a world iff A and B are true
there. However, ¬ and→ must come in for different treatments. Negation can be
handled by taking the logic of a world to be 4-valued, where the values are true
(only), false (only), both, and neither. However, it turns out that it is very difficult
to provide semantics in this way for the Anderson/Belnap logics when one has to
worry about nested conditionals. So Routley and Meyer took another tack. Each
world, w, comes with a “mate”, w∗, and:

• ¬A is true at w iff A is not true at w∗

Not, NB, at w, as in classical logic—though there is nothing to prevent w∗ from
being w in an interpretation. For the semantics of→, a ternary relation, R is used.
And:

• A→ B is true at world w iff for all x and y such that Rwxy, if (materially) A
is true at x, B is true at y.

This generalises the semantics of J , where a binary relation would be used, and
x and y are the same.
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The most obvious philosophical question concerning these semantics is what
the machinery ∗ and R mean. It can be agreed that they do what is necessary as
purely technical devices; but more than that is needed if what they are to provide
is a semantics, properly so called—that is, an intelligible account of the meanings
of not and if (in their appropriate senses).

Another question follows quickly. Various constraints on R deliver an enor-
mously wide variety of systems of relevant logic, with quite diverse properties.
Which one is appropriate for the semantics of a natural language if ? This is
a crucial question, since some relevant logics are not appropriate for some ap-
plications. For example, those logics which validate the contraction principle,
A → (A → B) |= A → B. reduce the naive theory of truth or of sets to triviality,
due to Curry paradoxes. (See below.)

Relevant logics are most naturally thought of as rivals to classical logic. True,
they extend the vocabulary of classical logic with the new connective →. But
the treatment of negation naturally ensures the invalidity of the classically valid
principle of Explosion—though one can construct relevant logics where it holds.
(It can be the case that A∧¬A |= B without it being the case that |= (A∧¬A)→ B.)
So relevant logics are another kind of paraconsistent logic.

A rather different matter concerning conditionality centres round some other
apparently aberrant inferences, such as:

• If there is a subway strike tomorrow, I will walk to work. So if there is a
subway strike tomorrow and I die tonight, I will walk to work.

• If the other candidates die before the election, Biden will be re-elected. If
Biden is re-elected, the other candidates will be disappointed. So if the other
candidates die before the election, they will be disappointed.

These inference are valid if if is interpreted as ⊃ (classically or intuitionistically),
J, or→.

To handle the invalidity of this kind of inference, a class of logics called vari-
ably strict (VS) logics (or sometimes simply conditional logics) was proposed
about 1970, first by Stalnaker and then by (David) Lewis. There are some techni-
cal niceties which we may slide over here; the basic idea is as follows. To evaluate
the truth of A J B at w, we look at all the worlds where A is true. If B is true
at all of them, A J B is true at w; if not, not. In VS logics, things work exactly
the same, except that we do not look at all the worlds where A holds, but just
those of a certain kind, determined by A. Technically these can be picked out by
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a function, fA(w) from worlds to subsets of worlds (where, of course, A is true at
worlds in fA(w)). Let us write this new kind of conditional as >. Then:

• A > B is true at w iff for all w′ ∈ fA(w), B is true at w′.

Our two inferences are invalidated by the fact that, in each example, the two con-
ditionals involved have different antecedents, A1 and A2, so when evaluating at
the actual world, @, fA1(@) and fA2(@) are different. Thus, in the first example,
fA1(@) is the set of worlds where there is a subway strike tomorrow, but otherwise
things go on pretty much as normal; and fA2(@) is the world there is a subway
strike tomorrow, I die tonight, but otherwise things go on pretty much as normal.

The crucial philosophical issue is now how one picks out the worlds in ques-
tion. For a start, the selection is going to be contextually dependent, as standard
examples show:

• If this car were an photon, some cars would travel at the speed of light.

• If this car were a photon, some photons would not travel at the speed of
light.

Which of these is true depends on what, exactly, the context of discussion is.
Lewis and Stalnaker took fA(w) to be the worlds most similar to w where A is

true—and Stalnaker took there to be a unique such world. (Similarity is, of course,
a contextual matter.) But this gives very strange results. Consider the conditional
concerning the Cuban missile crisis:

• If Kennedy had pressed the button, a nuclear armageddon would have en-
sued.

This is almost certainly true. But on almost any plausible understanding of simili-
tude, a world after a nuclear holocaust is absolutely nothing like the present world.
So what is in fact true is that:

• If Kennedy had pressed the button, something would have happened to pre-
vent a nuclear armageddon.

You have to be a real optimist to believe that.
Setting similarity aside, fA(w) would seem to contain those worlds where A

is true and where certain contextually determined truths of w hold. But how one
determines what carries over from w is very hard to specify.

At this point, the matter intersects with another thorny issue. Consider another
very standard pair of examples:
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• If Oswald were not to have shot (or had not shot) Kennedy at Dealey Plaza
on November 22, 1963, someone else would have.

• If Oswald did not shoot Kennedy at Dealey Plaza on November 22, 1963,
someone else did.

The second is true, but assuming that Oswald did, in fact, act alone, the first is
false.

The first kind of conditional is sometimes called a counterfactual conditional.
The name is a poor one. The antecedents of both of our conditionals are contrary
to fact. Perhaps a bit better, the first conditional is sometimes called a subjunc-
tive conditional, since the verb of its antecedent is in the subjunctive mood (to
the extent that English still has one). The second is called an indicative condi-
tional, due to the mood of the verb of the antecedent. One has to be careful even
here, however. It is very difficult to obtain a contrast of this kind for all subjunc-
tive/indicative pairs, especially when the subjunctive is a present one. Witness:

• If I go to the party I will enjoy myself

• If I were to go the the party I would enjoy myself.

But setting niceties of terminology aside. Some (Jackson, Lewis himself) have
argued that the example shows that English has two kinds of conditionals, that
indicative conditionals are captured by ⊃, and that subjunctive conditionals are
captured by >. That does not look very plausible: even setting aside the paradoxes
of the material conditional, our subway examples above contain only indicative
conditionals.

Others have held that English has only one kind of conditional (Stalnaker,
Priest), in which case, the difference between the two Kennedy examples must by
accounted for, not by two meanings of if, but by the differences of tense and mood
involved. Loosely, the first Oswald example is really the conditional:

• If Oswald does not shoot Kennedy at Dealey Plaza on November 22, 1963,
someone else will.

where the point of evaluation is shifted back to that fateful morning.
One final comment. Notwithstanding this matter, standard VS logics may

clearly be thought of as supplements to classical logic, since one just takes a modal
logic based on classical logic and adds the connective >. However, if one proceeds
in this way, conditionals with necessarily false antecedents come out as vacuously
true, just as for strict conditionals. This seems just as absurd. Merely consider
(and assuming, for the sake of illustration that classical logic is correct):
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• If intuitionist logic were correct, the law of Excluded Middle world fail

• If intuitionist logic were correct, the law of Explosion world fail

These are true and false, respectively. But since there are no possible worlds where
the antecedent is true, they are both vacuously true. Some (such as Williamson)
have bitten the bullet. But given an approach to conditionals of the kind we have
been discussing, it would seem necessary to take into account worlds where the
antecedent is true; and these (given our assumption) are impossible worlds. In
fact, it is perfectly straightforward to construct a VS logic based on a relevant
logic, with its supply of possible and impossible worlds. In such a logic, condi-
tionals with logically false antecedents are not vacuously true. Since such logics
are relevant logics, they are rivals to classical logic.11

6 Contraclassical Logics: Connexivism and Robustly
Paraconsistent Logics

All the non-classical logics we have considered so far are sub-logics of classical
logic (when the various conditionals are identified with ⊃). However, there are
non-classical logics for which this is not the case. Such logics are called contra-
classical, and they are clearly rivals to classical logic. There are a number of such
logics, but perhaps one of the most interesting kind are connexive logics.

Consider the two principles:12

Aristotle: |= ¬(A→ ¬A)

Boethius: A→ B |= ¬(A→ ¬B)

where → is some generic sort of conditional. (Clearly Boethius entails Aristotle
provided |= A→ A.) As is easy to check, these are not classically valid principles
(when→ is ⊃). Despite this, they have a certain prima facie plausibility. Indeed,
the philosophers they are named after appear to have endorsed them, and both
principles were fairly orthodox until about the 12th Century. They then fell out of

11Further reading and references: Priest (2008), chs. 5 (conditional logic), 10 (relevant logic);
Restall (1999); Beall et al (2012); Priest (2018); Edgington (2020); Starr (2019); Berto, French,
Priest, and Ripley (2018).

12One finds a number of different articulations and variations of these in the contemporary
literature, but these will do for present purposes.

18



favour and were largely forgotten. They were rescued from oblivion by Angell and
McCall in the 1960s, who constructed formal systems in which these inferences
are valid. Such systems are now called connexive logics.

If connexive logics are to avoid inconsistency, they must have a non-standard
account of conjunction, giving up the principle that (A∧B)→ B. For this gives us
(A∧¬A)→ A and (A∧¬A)→ ¬A. Boethius then delivers ¬((A∧¬A)→ ¬A).13

For this reason, the systems of Angell and McCall are rather ugly. However, a very
simple and elegant way of producing a connexive logic was noted by Wansing in
the early years of this century. We simply specify the falsity condition of A → B
(and so the truth condition of ¬(A → B)) as that of the truth of A → ¬B. Given
A→ B and double negation, we then have A→ ¬¬B; and so ¬(A→ ¬B) follows
immediately. Moreover, the falsity conditions are very natural, since we often
negate conditionals in this way—‘If you go to the movies, will you take me?’
‘No. If I go to the movies I will not take you.’

Of course, this procedure makes sense only if we are in a semantics where
we can specify truth and falsity conditions of formulas (maybe at a world) inde-
pendently. But this is required in any logic where sentences can be neither true
nor false or both true and false. In such logics, if one knows whether something
is true, nothing follows about whether or not it is false: this has to be specified
separately. (And if the truth and falsity conditions overlap we have a truth value
glut. If they underlap we have a truth value gap.)14

If one constructs a connexive logic in this way, and conjunction behaves nor-
mally, so that we have the logical truth of (A∧B)→ A, then our logical truths will
be inconsistent, as we have seen. Assuming that the semantics guarantees that the
set of logical truths is non-trivial (i.e., does not contain all sentences), the logic
must be paraconsistent. Most standard paraconsistent logics are quite consistent.
That is, their set of logical truths is consistent. As far as I know, logics in which
this is not the case have no standard name, so let us call a paraconsistent logic
where the set of logical truths is inconsistent robustly paraconsistent. The view
that some contradictions are true is termed dialetheism. Dialetheism is not a view
of logic, but of metaphysics. However, since logical truths are, presumably, true,
robustly paraconsistent logics are committed to dialetheism. That even logic itself
is dialetheic is a thought that invites much further philosophical reflection.15

13Indeed, these principles appear to have disappeared from the history of logic, about the time
that an extensional account of conjunction was becoming orthodox.

14Wansing first applied the idea to Nelson’s logic of constructible negation—essentially positive
intuitionist logic, but based on an underlying 4-valued logic.

15Further reading and references: Priest (2008), 9.7a (connexive logic), Wansing (2022).
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7 Sub-Structural Logics: Contraction and Cut
Let us return to sub-logics of classical logic. In the first half of the 20th century,
the systems of proof for logics were usually axiomatic. However, a powerful
and much more perspicuous method of proof was introduced for classical and
intuitionist logic by Gentzen in the 1930s: sequent calculi. Sequents are objects
of the form Γ⇒ ∆ where Γ and ∆ are multisets of formulas,16 meaning, intuitively,
that if all the members of Γ are true, some of the members of ∆ are true. For each
connective there is a pair of rules, one introducing the connective on the left of⇒
and one introducing it on the right. In addition, there are structural rules, which
do not involve connectives, but manipulate sequents in other ways. Two of the
most important are Contraction left and right:

Γ, A, A⇒ ∆ Γ⇒ ∆, A, A
Γ, A⇒ ∆ Γ⇒ ∆, A

and Cut:
Γ⇒ ∆, A A,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′

The logics obtained by dropping structural rules are sub-structural logics.
Dropping the rule of Contraction has been advocated mainly by logicians who

are interested in resource-boundedness. Thus, it may be possible to derive a con-
clusion using A twice, but not using it only once. However, as a way of solving
the paradoxes of self-reference, dropping Contraction has more recently been ad-
vocated by some logicians (Paoli, Zardini). And for the same reason, dropping
Cut has been advocated by others (Cobreros, Égré, Ripley, van Rooij). The attrac-
tion of such a solution is that it gives a uniform solution to at least the Liar and
Curry’s paradox. Here, for example, is a derivation of Curry’s paradox, with the
applications of Cut and Contraction marked. Let A be any sentence one wishes,
and let C be a sentence of the form T 〈C〉 → A. Then we have:

... T 〈C〉 ⇒ T 〈C〉 A⇒ A
T 〈C〉 ⇒ A T 〈C〉 ,T 〈C〉 → A⇒ A
⇒ T 〈C〉 → A T 〈C〉 ,T 〈C〉 ⇒ A
⇒ T 〈C〉 T 〈C〉 ⇒ A Contraction

⇒ A Cut

16I.e., sets with repetitions, so that {A, A, B} is not the same as {A, B}.
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The ellipsis on the left hand proof represents the first three lines of the right hand
proof. Since Cut and Contraction are valid in classical logic, the logics produced
by dropping these principles are rivals to classical logic.

Contraction-free logics do not have a simple semantics, but Cut-free logics
may be given one using a 3-valued logic. A valid sequent is one that preserves des-
ignated values; but the designated values are different on the left and right side of
⇒. In particular, a sequent is valid if whenever all the antecedents have value true,
some consequent has either the value true or the non-classical value—whatever
one takes this to mean. The standards of acceptability are, then, more strict on the
left hand side of ⇒, and more tolerant on the right hand side. Such logics may
therefore be called Strict/Tolerant (ST).

Employing sub-structural logics in this way raises a number of important
philosophical questions, notably:

• What independent reasons (if any) are there for believing the structural prin-
ciples in question not to be valid? In particular for the Cut-free approach,
why should we change designated values between antecedents and conse-
quents?

• If one drops these principles, how can one account for the massive amount
of apparently legitimate and non-paradoxical reasoning which uses them?
For example, Cut is just another name for the transitivity of deduction; and
this is used all the time in, say, mathematics, when we use lemmas to deduce
theorems.

• Are there other paradoxes of self-reference that cannot be blocked in this
way? For example, Contraction-free logics standardly have operators called
exponentials, which allow for contractions of certain kinds; and these may
be used to deliver versions of the liar and Curry paradoxes.

Another important question to which this suggestion gives arise is as follows.
As proved by Gentzen, if one takes a sequent calculus for classical logic, any
sequent that can be proved with Cut, can be proved without it (provided that there
are no other rules of inference). It is sometimes claimed on this ground that ST is
not a rival to classical logic, since it has the same consequence relation. However
one can really claim this only if one ignores higher order inferences.

For think of the sequents we have been dealing with as of level 1, and write⇒
as ⇒1. Then we may think of Cut as a (meta-)inference sequent, of level 2, and
write it as:
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• [(Γ⇒1 ∆, A), (A,Γ′ ⇒1 ∆′)]⇒2 [Γ,Γ′ ⇒1 ∆,∆′]

This sequent will hold in classical logic, but fail in ST.
It follows that two logics may agree at level 1 and disagree at level 2. Next, we

can clearly consider sequents of level greater than 2—indeed of arbitrarily high
level. And it has been shown (by Barrio, and his co-workers) that the phenomenon
repeats itself all the way up (even into the transfinite). That is, two logical may
agree on their inferences up to some level, α, and then diverge at level α + 1.

In the first half of the 20th century it was common to identify logics with sets
of logical truths. Once it was realised that different logics may have the same set
of logical truths, it became standard to identify a logic with a level 1 consequence
relation. It might well now be suggested that even this is not good enough. To
specify a logic, we need to specify the consequence relation at every level.17

8 Free Logics: Existence and Quantification
With the exception of the discussion of intuitionist logic, quantification has not
featured till now, but quantification is central to the logics of our last two sections.
The first of these concerns free logics.

Classical first-order logic verifies the inference of existential generalisation:

EG: Ax(a) |= ∃xA

If one reads ∃x as there exists an x such that, EG does not seem correct. All the
following appear true:

• Sherlock Holmes is a fictional character

• I am reading about Sherlock Holmes

• The tourist visiting Baker St admired Sherlock Holmes.

But Sherlock Holmes does not exist, and never did.
Free logics are logics where EG fails. They were pioneered by Leonard and

Lambert, starting around the late 1950s. They contain an existence predicate
(primitive or defined—possibly in terms of identity), E. EG is invalid; what is
valid is its restriction:

17Further reading and references: Priest (202b); Barrio, Rosenblatt, and Tajer (2015); Priest
(202c).
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EG: Ax(a),Ea |= ∃xA

Free logics are, then, rivals to classical logic.
In the semantics, there is a domain, D, of objects (at each world, if we have

a world-semantics), thought of as containing the existent objects. Terms in the
language may have a denotation in D, or not. When not, matters can be handled in
different ways. In some free logics such terms simply have no denotation. That is,
the denotation function is a partial function. In others, there is a second (“outer”)
domain, D′, thought of as containing non-existent objects; and terms without a
denotation in D find one in D′. Quantifiers range over D; and if a has a denotation
in D, Ea is true (at a world, if we have a world semantics). Otherwise it is false.
In many cases, there is no technical difference between the two approaches, since
a partially defined function can always be thought of as a total function where the
undefined case is filled in with a “dummy” value—one of the members of D′.

These semantics leave various matters open. The most important concerns the
truth of atomic sentences. Consider an atomic sentence, Pa. (The generalisation
to many-place predicates is straightforward.) If the interpretation satisfies the
constraint:

• if a does not have a denotation in D, Pa is false (at a world)

the logic is called a negative free logic. If we have an underlying logic with truth
value gaps, and the logic satisfies the condition:

• if a does not have a denotation in D, Pa is neither true nor false (at a
world)—except, perhaps when P is E

the logic is called a neutral free logic. Otherwise it is called a positive free logic.
Unless all atomic sentences are given the same value, the partial function seman-
tics cannot be used for positive free logics, since denotations for terms are required
to draw distinctions between the values of different atomic sentences.

The first important philosophical issue is which of these three is the correct
approach. At least prima facie, a free logic needs to be positive. Our three exam-
ples above (and many like them) all appear true. Moreover, we do appear to need
to draw distinctions between the truth values of atomic sentences. It is true that
the Ancient Greeks worshipped Zeus. It is not true that they worshipped Sherlock
Holmes.

Next, if we have a semantics with an “outer domain”, why should we not
let quantifiers range over D ∪ D′? Of course, if one does so, one must pre-
cisely not read the particular (as opposed to universal ) quantifier as there exists.
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Some will do nicely. Let us write this quantifier as S. Then our old existential
quantifier—now properly so-called—can be defined in the obvious way: ∃xA is
Sx(Ex ∧ A). And there are plenty of examples of non-existentially-loaded quan-
tification in English:

• You and I are thinking of something—the same thing: Sherlock Holmes.

• I wanted to buy you something for Christmas, but I found out that it does
not exist: an actual photograph of Sherlock Holmes.

Quine argued that the particular quantifier means, there exists. But his arguments
are, to put it mildly, underwhelming. Quine’s view still, however, finds its philo-
sophical defenders.

Moreover, once we have gone this far, there would appear to be nothing wrong
with EG, provided we read the ∃ as S. Indeed, if none of the other machinery is
at issue, there would appear to be no bar to taking over classical logic wholesale,
simply understanding the particular quantifier as S. Free logic then is just a sup-
plement of classical logic, not a rival. The supplement is the predicate E, and D
has nothing to do with quantification. It is simply the extension of E.

There are, of course, other issues concerning terms that denote non-existent
objects. One concerns how their denotations are fixed, since such objects are not
in the causal web. The same issue concerns abstract mathematical objects, of
course, even if one takes these to be existent objects (though the similarity here is
rarely mentioned).

Another issue concerns descriptions (characterisations). It is natural to think
that at least some of these refer to non-existent objects. The Greeks, after all,
worshipped the head of the pantheon on Mt. Olympus. One may also think that
an object characterised in a certain way indeed has its characterising properties:

• Ax(ιxA)

No one can subscribe to this principle in full generality, however. It leads to
triviality in two steps. Let B be an arbitrary sentence, and let us write t for ιx(B ∧
x = x). Then the principle gives us B ∧ t = t, from which B follows. So when
(and where) do instances of the principle hold? Discussions about this loom large
in debates between contemporary noneists (those who hold that some objects do
not exist).18

18Further reading and references: Nolt (2020); Priest (2016), chs. 17, 18 (non-existence);
Reicher (2019).
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9 Second-Order and Plural Logics: Higher Order
Matters

The last topic we will look at concerns second-order logic (and higher order logic
more generally, but most of the philosophical issues are already raised at the
second-order level, so let us stick with that). In this, there are distinctive vari-
ables, of every adicity, n, which can occupy syntactically the place of an n-place
predicate. These can bound by appropriate quantifiers. There is then a compre-
hension scheme of the form:

• ∃Xn∀x1...∀xn(Xnx1...xn ↔ A)

where A is any formula not containing Xn. Notice that this includes the case where
n = 0. Variables of the form X0 are usually called ‘propositional variables’.

The first thing to note here is that when Frege and Russell invented/discovered
their logic, it was second-order. So in a sense, standard second-order logic is still
classical. However, Frege/Russell logic was stripped down to first-order, largely
by Hilbert and his school; and the term ‘classical logic’ is now more commonly
applied to first-order logic only. In this case, second-order logic—if it a logic at
all (see below)—is a supplement of classical logic. Note, however, that all the
logics we have looked at can be extended to second-order. In that sense, there is
nothing specifically classical about second-order logic.

The most obvious philosophical question concerning second-order logic is
‘what do the variables range over, and what are the identity conditions of these
entities?’. In the usual model theory, the second-order entitles are sets (or set-
theoretic relations), with their usual extensional identity conditions. But there
are other possibilities: one might take them to be propositions, or propositional
functions. The identity conditions for such entities are more contentions, but one
natural suggestion is that two are identical if they are necessarily co-instantiated.

Another issue is whether second-order logic is really logic at all. If one thinks
of second-order entitles as sets, one may take second-order logic to be simply a
fragment of set-theory; and this is not logic, one may argue, since it has a spe-
cific ontology. As Quine put it, it is simply ‘set theory in sheep’s clothing’.19

Quine also argued that second-order logic is not logic since it is not axiomatis-
able. Whether or not this is a good argument, it raises the question of the role that
axiomatisability ought to play in logic.

19Quine (1970), p. 66.
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A logic closely connected with second-order logic is plural logic. This was
pioneered by Boolos in the 1980s. Pluralities are things like:

• John, Paul, George, and Ringo

• the authors of Principia Mathematica

• prime numbers greater than 1010

Plural logic has variables that range over such things—usually written as double
lower case romans, as in xx—and corresponding quantifiers. It can also have
names for pluralities, and predicates which apply to them. There is also a binary
predicate, ≺, where x ≺ yy means ‘x is one of the yy. So one can say things such
as:

• Russell≺ the authors of Principia Mathematica

• ∃xx I am going to the party with xx (there are some people such that I am
going to the party with them)

• Elizabeth Windsor and Philip Mountbatten married

Note that the last of these does not mean the same as:

• Elizabeth Windsor married and Philip Mountbatten married

(That would be true if each had had a different spouse.)
Standardly, plural logics come with a comprehension principle:

• ∃xx∀y(y ≺ xx↔ A)

where xx does not occur in A—provided something satisfies A: standardly, there
are no empty pluralities. And pluralities have extensional identity conditions:

• xx = yy↔ ∀z(z ≺ xx↔ z ≺ yy)

Clearly, then, plural logics are supplements of classical logic. But note that, as
for second-order logic, any of the logics we have met can be extended to plural
logics.

A major philosophical issue to which plural logic gives rise is this. Clearly,
both plural logic and second-order are doing the same kind of thing in some sense:
they both allow quantification over aggregates of objects—to use a neutral term.
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Some advocates of plural logic have argued that plural logic is preferable, how-
ever, since it is committed to only first-order objects, and so has no “higher order”
ontological commitments. Others have replied that plural logic is just “second-
order logic in sheep’s clothing”; and so it is committed to higher order entities.
(My own view, for what it is worth, is that since there are names for pluralities,
and the names refer, there are things to which they refer, however one concep-
tualises these things. Since Naming and Necessity, it is very hard to sustain the
thought that names are really definite descriptions of some kind.)

A closely related issue concerns Cantor’s paradox. In set theory, Cantor’s
theorem states that there are more subsets of a set than members of the set. That is,
given any set, x, there is no injective function from the subsets of x to x. Problems
then arise if there is a set of all sets, V . For the identity function is an injective
function from the subsets of V to V .20

Given the close similarity between sets and pluralities, it is unsurprising that
there is an analogue of Cantor’s theorem for pluralities. There are more sub-
pluralities of a plurality then objects in the plurality. That is, given any plurality,
xx, there is no injective function from the sub-pluralities of xx to the xx.21 There
is then a problem if there is a plurality of all objects, VV , and an injective function
from sub-pluralities of this (i.e., any plurality) to VV . Moreover, there do seem to
be such functions. For example, we can map the plurality xx to the mereological
sum of the objects, {y}, such that y ≺ xx. (The singletons are necessary, since if
x and y are proper parts of z, then the mereological sums of x and z, and y and
z, are both z.) So either there is no plurality of all objects or there is something
wrong with these function—or the theory must be formalised with a contradiction-
tolerant, i.e. paraconsistent, logic. (In orthodox set theory, the the solution to the
paradox is to reject the existence of V; but there is no obvious reason why one
must make the same move in plural logic.)22

10 A Brief Look Back
The application of contemporary tools of mathematics to logic caused a revolution
in the subject. However, I think it fair to say that it took logicians many more
decades to start to explore the full riches of what they make possible. The dialectic

20This is just Russell’s Paradox. See Priest (2005), 9.1.
21See Florio and Linnebo (2021), ch. 3.
22Further reading and references: Väänänen (2019); Florio and Linnebo (2021).
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between philosophical issues and the application of these tools has been one of the
most exciting aspects of logic in the last 50 years or so.

In this essay, we have been through some aspects of this dialectic. The cov-
erage of each issue has perforce been superficial. And there is a wealth of issues
it has not been possible to touch on at all—spreading into metaphysics, the phi-
losophy of language, and epistemology. Many of all of these matters are still
half-finished business. And many entirely new ones will surely emerge as time
goes on. We live in perhaps the most fruitful and creative period in logic which
there has ever been.23
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