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Abstract

Many-valued logic raises many interesting questions, both philo-
sophical and technical. This essay concerns just one of them: In
a three-valued logic, how should one interpret the third value? To
frame the essay, I will start with the definition of a many-valued logic.
I will then make some preliminary remarks on matters, which will fo-
cus us on 3-valued logics. The major interpretations of the third value
fall into roughly two groups: those where it is “infectious”, and those
where it is not. The main part of this essay will then divide into two
major sections, corresponding to that division.
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1 Introduction

Many-valued logic raises many interesting questions, both philosophical and
technical. This essay concerns just one of them: In a three-valued logic, how
should one interpret the third value? To frame the essay, I will start with the
definition of a many-valued logic. I will then make some preliminary remarks
on matters, which will focus us on 3-valued logics.

The major interpretations of the third value fall into roughly two groups:
those where it is “infectious”, and those where it is not. (I will explain what
this means in due course.) The main part of this essay will then divide into
two major sections, corresponding to that division.1

2 Preliminary Matters

2.1 Many-Valued Logic

So let us start by fixing some terminology and notation.
We will be concerned with propositional logics. All the logics we will

meet can be extended to first (and higher) order logics in the familiar way.

1For comments on earlier drafts of this paper, many thanks go to Mel Fitting, Paul
Égré, and David Over.
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But such extensions have little relevance to the topic of this essay, so need
not concern us here.

A many-valued (propositional) logic is a validity relation defined on a
formal language, with an infinite set of propositional parameters, P , and
a set of propositional connectives, C. If c ∈ C is an m-place connective,
and A1, ..., Am are formulas, then we may write the formula obtained from
these using c as c(A1, ..., Am) (though I will often use the more familiar infix
notation when this is standard).

A semantic characterisation of the validity relation is given by a structure
〈V ,D, {fc : c ∈ C}, ν〉.2 In the case of finitely many-valued logics, it is always
possible to provide a proof-theoretic characterisation as well; but since inter-
pretation is a matter of semantics, such matters will play little role in what
follows. (In an appendix to this paper, I will, however, give natural deduc-
tion systems for the four main 3-valued logics we will meet: K3, P3, B3, and
H3.)
V is the set of values that formulas of the language may take. D ⊆ V

is the set of designated values. If c ∈ C is an m-place connective, then fc
is a function from Vm to V . ν is a map from P to V . This is extended to
a map from all formulas to V by recursion. Specifically, if c is an m-place
connective, then:

• ν(c(A1, ..., Am)) = fc(ν(A1), ..., ν(Am))

It is this clause which makes the semantics truth-functional, in a general
sense.

For our purposes, we need deal only with inferences with a single con-
clusion. So if Σ is any set of formulas, validity, |=, is defined in terms of
preservation of designated values. That is:

• Σ |= A iff for all ν, if ν(B) ∈ D, for all B ∈ Σ, then ν(A) ∈ D

2.2 Zeroing in on Our Topic

Let us now focus on our topic. First, a many-valued logic is called ‘m-valued’
if the cardinality of V is m. From now on, unless otherwise mentioned, we
will take this m to be 3.

Next, the very title of this essay (given to me by the editors), suggests
that we know what the interpretations of “the first two” values are. The

2See Priest (2008), 7.2.
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natural assumption is that these are true (and only true), and false (and
only false). Let me write these as 1 and 0. I will write the third value as
X—for here lies our unknown.3

It is also natural to read into the title the assumption that we know
how the “first two” values behave, and that this is “classically”. So let c be
any standard m-place classical connective in our language, and let gc be the
“classical” truth function corresponding to it. Then we will call a 3-valued
logic regular if it satisfies the following condition. If v1, ..., vm are 1 or 0 then:

• fc(v1, ..., vm) = gc(v1, ..., vm)

We will be concerned only with regular many-valued logics. This constraint is
not toothless, since there are 3-valued logics that do not satisfy this condition.
Thus, one of the oldest many-valued logics was proposed by Post.4 In these,
V = {0, ...,m+ 1}, and negation is the cyclical function. That is:

• if v ≤ m then f¬(v) = v + 1

• f¬(m+ 1) = 0

Unlessm = 1, so that we have a 2-valued logic, this logic is clearly not regular.
Post’s logics are perfectly good mathematical structures, but the behavior of
negation makes it hard to give meaning of philosophical significance to its
values.5

Next, let us turn to the connectives which will concern us. We can start
with the familiar suspects: ¬,∨,∧,→. (Though, of course, depending on the
meaning of X, certain other connectives may have sensible meanings.) We
may assume, as usual, that A↔ B is equivalent to (A→ B) ∧ (B → A).

Much of the technical interest in 3-valued logic concerns →. However, I
will largely ignore the connective here. The reason is as follows. → is usually
taken to represent the conditional, if, but no many-valued semantics does
justice to the notion. One way to see this is as follows.6 Suppose our logic
satisfies the conditions:

[1] |= A↔ A

3The various authors I will mention in what follows may have different notations. I
will translate their notations into mine without comment.

4Post (1921).
5Post himself suggest an interpretation in which each sentence represents an m+1-tuple

of sentences of the usual kind. See also Rescher (1969), p. 54 f.
6See Priest (2008), 7.5.4–7.5.6.
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[2] A |= A ∨B

Then if the logic has m values, and D is
∨

1≤i 6=j≤m+1

(pi ↔ pj), then |= D.

Why? Since there is an infinite number of propositional parameters, there
must be distinct pi and pj such that ν(pi) = ν(pj). So by [1], ν(pi ↔ pj) ∈ D.
(Since |= A ↔ A, then for any value v, f↔(v, v) ∈ D. So if v(pi) = ν(pj),
f↔(ν(pi), ν(pj)) ∈ D.) The result follows by [2]. Now, let pk be ‘A molecule
of water has k atoms’. Then intuitively, for distinct i and j, ‘pi iff pj’ is not
true. So a disjunction of such things should not be true, let alone logically
true.

There are, in fact, many-valued logics in which [1] and [2] fail. For ex-
ample, as we shall see, [1] fails in K3 and [2] fails in B3. However, as many
have noted, giving up [1] (and the things that tend to go with it) ‘cripples
ordinary reasoning’ employing conditionals.7 And [2] is arguably beside the
point. Given [1], f↔(0, 0) ∈ D, and so if pi and pj are false only, pi ↔ pj is
truthlike. Now, if pk is as before, and i and j are distinct numbers different
from 3, pi and pj would clearly appear to be false only; yet ‘pi iff pj’ is hardly
truthlike.8

Conditionals are essentially intensional constructions, where truth values
depend on something more than the denotations of their components. What
this means is that any many-valued semantics for→, though it be technically
useful, cannot reflect facts about meanings—and so tell us anything about
the meanings of the values.

For similar reasons, other intensional operators, such as modal operators,
are not on the list of connectives with which we will be concerned. It is well
known that no standard modal logic has a finitely many-valued semantics, as
proved by Dugundji (1940).9 (Indeed, the proof I have just given is a simple
variation on his argument.)

In the present context, this fact is not toothless either. Indeed, the ear-
liest many-valued logic was given by  Lukasiewicz in his paper in Polish,
‘Philosophical Remarks on Many-Valued Systems of Propositional Logic’, of
1920.10 This was a regular 3-valued logic,  L3. Motivated by Aristotle’s argu-
ment about future contingents in ch. 9 of De Interpretatione, he interpreted

7Field (2008), p. 73.
8See, further, Santorio and Wellwood (2023).
9Based on a technique used by Gödel (1933) to prove the same result about intuitionist

logic.
10Translated into English in Borkowski (1970), pp. 153–178.
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X as ‘is possible’ (though he does gloss this at one point as neither true nor
false11). Things that are true are possible, of course, and this motivates the
truth function for ♦:

• f♦(v) = 1 if v = 1 or v = X

• f♦(v) = 0 if v = 0

The rub, of course, is that things that are false can be possible too. So this
interpretation gives strange results. For example, in  L3, D = {1} and if
f∧(v1, v2) = 0 then v1 = 0 or v2 = 0. It follows, as is easy to check, that,
♦A,♦B |= ♦(A ∧ B). This is clearly not right. For both A and ¬A may be
possible, whilst A ∧ ¬A is not. Moreover, this inference would be valid even
if one took D = {1,X}. These things are, again, little more than the result
of inappropriately forcing an infinite variety into a finite set of pigeon holes,
which is at the basis of Dugunji’s theorem.

Hence, to explore plausible interpretations of X in what follows, we focus
on our old friends, ¬,∨, and ∧.

3 Non-Infectious Xs

Let us now turn to our subject proper. Given that we have three values,
and two of them are already pinned down, there are 3 ways of completing
the specification of values for ¬, and 53 ways of doing it for each of ∧ and
∨. This gives us 3× 53 × 53 possible combination of functions for out three
connectives.12 The reader will be pleased to know that we will not consider
all of these here... Fortunately, there are two major philosophical strategies
for handling X, so we may consider just these.

3.1 First Degree Entailment

The first strategy is to make the natural generalisation of the classical truth/falsity
conditions for the connectives. To see how, let us make a detour through a
well known 4-valued logic.13

11Borkowski (1970), p. 153.
12In the logics we will consider, De Morgan’s laws and Double Negation hold. If one

insists on these, conjunction may be defined in terms of disjunction (or vice verse), so the
number drops to 3× 53.

13On the following, see Priest (2008), ch. 8.
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The natural truth/falsity conditions for our connectives in classical logic
are as follows. Let us write t for truth (in an interpretation) and f for falsity
(in an interpretation) then:

• ¬A is t iff A is f

• ¬A is f iff A is t

• A ∧B is t iff A is t and B is t

• A ∧B is f iff A is f or B is f

• A ∨B is t iff A is t of B is t

• A ∧B is f iff A is f and B is f

Of course, if one assumes that truth and falsity are exclusive and exhaustive,
as is the case in classical logic, the second of each pair is redundant. But if
one drops this assumption, this is no longer the case. And that is exactly
what we are going to do now.

For any formula, we then have four possibilities: that it is true and only
true, false and only false, both, and neither. So the possible sets of values
are {t}, {f}, {t, f}, and ∅. Let us write these as 1, 0, b, and n, respectively
(Recall that 1 and 0 meant true only and false only.) We may then have a
4-valued logic, where V = {1, 0, b, n}.

An easy way to specify the values of f¬, f∧, and f∨ can be obtained if we
represent our four values in a Hasse diagram, the Diamond Lattice:

1
↗ ↖

b n
↖ ↗

0

Let us write the lattice-value of A as |A| . Then applying the truth conditions
above, it is simple to show that |A ∧B| is the greatest lower bound of |A|
and |B|. For example, suppose that |A| = 1 and |B| = b. Then both A and
B are true, so A ∧ B is true. But B is false, so A ∧ B is false. That is,
|A ∧B| = b. Or suppose that |A| = b and |B| = n. Then it is not the case
that both A and B are true, so A∧B is not true. But A is false, so A∧B is
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false. That is, |A ∧B| = 0. The other cases are left as exercises. Similarly,
one can check that |A ∨B| is the least upper bound of |A| and |A ∧B|.

For negation: if |A| = 1 then |¬A| = 0. (If A is true but not false; then
¬A is false but not true.) Similarly if |A| = 0 then |¬A| = 1. But if |A| = b
then |¬A| = b. (If A is true and false, then ¬A is false and true, which is
the same thing—order does not matter.) Similarly, if |A| = n, |¬A| = n. In
other words, ¬ toggles between 1 and 0, and b and n are fixed points.

Finally, validity is defined as in classical logic, as truth preservation. In
other words, an inference is valid if whenever all the premises are 1 or b, so
is the conclusion. (Recall that truth can now come in two flavours: true and
not false, and true and false.) In other words, D = {1, b}.

This 4-valued logic is usually called First Degree Entailment (FDE).14

3.2 K3 and P3

Given FDE it is easy to see that if no propositional parameter has the value
b then no formula does; and if no propositional parameter has the value n
then no formula does. Hence the left and right hand sides of the lattice
give perfectly well defined 3-valued logics. Though b and n have intuitively
different meanings, the lattices for the two cases are isomorphic. We may
diagram this in the following tables:

¬
1 0
X X
0 1

∧ 1 X 0
1 1 X 0
X X X 0
0 0 0 0

∨ 1 X 0
1 1 1 1
X 1 X X
0 1 X 0

Here, X could be either b or n. The only formal difference between the logics
is in the designated values. b is designated and n is not. So if X = n,
D = {1}; and if X = b, D = {1, b}. In the first case we have Strong Kleene
logic, K3. In the second case, we have the Logic of Paradox, LP . For reasons
of uniformity, I will write this as P3.

15 Note that in  L3 the tables for these

14FDE was invented/discovered by Anderson and Belnap. (See Anderson and Belnap
(1975), ch. 3.) The 4-valued semantics is due to Dunn. (See esp. §18.)

15On the two logics, see Priest (2008), ch. 7. For K3, see Kleene (1938), with a much
fuller discussion in Kleene (1952), §64. For P3, see Priest (1979). The tables appear,
without mention of designated values in Asenjo (1966). The tables also appear in Asenjo
and Tamburino, where X is designated.
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connectives and the designated values are exactly the same as those for K3.
So the ¬, ∧, ∨ fragment of  L3 is the same as that of K3.

16

3.3 Varieties of Undesignated X

Let us consider the case where X = n. There are, in fact, many reasons why
one might suppose that certain sentences are neither true nor false. This is
not the place to enter into a philosophical discussion of how plausible such
claims are, but let us note these reasons. (I make no claim that this list is
exhaustive.)

Perhaps the oldest claim that there are such statements is due to Aristotle,
who, in the somewhat notorious ch. 9 of De Interpretatione, argued that there
are certain (“contingent”) statements about the future whose truth values
are not yet determined, and so which are (as yet) neither true nor false—such
as ‘there will be a sea battle tomorrow’.17 Aristotle did not, of course, have
the modern notion of a many-valued logic; but as we noted,  Lukasiewicz,
who was motivated by Aristotle, sometimes calls his third value neither true
nor false.

Kleene took sentences whose value is classically undefined as neither true
nor false. Thus, a partial recursive function, f , may be defined by a compu-
tation which, for certain inputs, i, does not terminate. Any statement of the
form f(i) = j is then such a sentence. Actually, Kleene insists that X is not
on a par with 1 and 0: it is not a value, but the absence of a value. But if
one recalls that n represents ∅, and so can be thought of as having a value
in the empty set, it is hard to see real philosophical substance in Kleene’s
insistence.18

16The tables for → are different, however. The table for K3 is the first of those below.
The table for  L3 is the second:

→ 1 X 0
1 1 X 0
X 1 X X
0 1 1 1

→ 1 X 0
1 1 X 0
X 1 1 X
0 1 1 1

→ 1 X 0
1 1 X 0
X 1 X 0
0 1 1 1

The table for → in P3 is the same as that for K3. The table for Ansenjo and Tamburino
(1975) is the third.

17See, further, Priest (2008), 7.9 and 11a.7.
18Recall also that there is no formal difference between a function being undefined for

some input and its having a “dummy value”, say ∗—or n—for those inputs.
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Another reason for supposing that there are valueless sentences was given
by Frege. In ‘Sense and Reference’ he argued that if a sentence contains a
non-denoting name, it is neither true nor false.19 Of course, Frege did not
have the notion of a modern many-valued logic either, but Kleene’s approach
could be seen as implementing the claim, since it is natural to suppose that
if f(i) is undefined, ‘f(i)’ fails to refer. Frege’s rationale, however, delivers,
not K3, but B3, as we will see in due course.

Reference failure might be thought of as some kind of presupposition
failure. There are other kinds. For example, ‘I have stopped beating my
dog’, might well be taken to presuppose that I used to beat it, and so to
fail in some way, if I did not. Some, such as Strawson, have held that
cases of presupposition failure are neither true nor false.20 However, perhaps
presupposition-failure motivates B3 more naturally than K3, as well.

Next, there is a long history of taking paradoxical sentences of semantic
self-reference, such as the liar sentence, to be neither true nor false. However,
perhaps the now most celebrated advocate of this view was Kripke.21 Kripke
also insisted that n should be regarded as lacking a value, since the evaluation
of paradoxical sentences he envisaged never results in 1 or 0.

Another kind of paradox where the notion of being neither true nor false
has a possible application is the sorites paradox. In this, a vague predicate
delivers borderline cases. Thus, a person, p, who is on the cusp of puberty
seems to be as much adult as child, and as little adult as child. It is a natural
thought that ‘p is a child (or adult)’ is neither true nor false. Some have
endorsed K3 as an appropriate logic for such borderline cases.22 The sorites
argument then breaks down. However, a 3-valued approach of this kind is
often coupled with some kind of supervaluation technique,23 or generalised to
a continuum-valued logic in an attempt to handle “higher order vagueness”.24

Finally, if one identifies truth with verification, then, since there may
well be statements, A, such that neither A nor ¬A is verified, such an A

19See Geach and Black (1970), pp. 56–98.
20Strawson (1952), pp. 174–179. See also Beaver, Guerts, and Denlinger (2021).
21Kripke (1975).
22E.g., Tye (1994).
23Given a K3 evaluation, a resolution is a classical evaluation which is the same, except

that any value n is replaced by either t or f . A formula is then true/false on a supervalulu-
ation if it is true/false on all resolutions (and neither otherwise). Validity is then defined
in terms, not of evaluations, but of supervaluations. Such a definition preserves classical
(single-conclusion) validty. See Priest (2008), 7.10.3–7.10.5a.

24See Priest (2008), ch. 11, and Keefe and Smith (1996b).

10



will be neither true nor false. Mathematical intuitionists identify truth with
verifiability. However, intuitionist logic is not a finitely many-valued logic.25

Reichenbach suggested using  L3 (augmented by some further connectives)
as a logic for quantum mechanics. X is the value of unverifiable state-
ments concerning quantum states.26 He interprets X as a certain kind of
meaninglessness. As one might then expect, A ∨ ¬A is not a logical truth.
However, in K3/ L3 ¬(A ∨ ¬A) is not a logical truth either. This is more
problematic, since quantum theory does not seem to be in the business of
denying the law of non-contradiction.27 More problematic is that what the
observation of quantum states seems to require is the failure of distribution:
A ∧ (B ∨ C) ` (A ∧ B) ∨ (A ∧ C). (It would appear that a particle can
hit a screen having gone through one or other of two slits, but not having
gone through either of them.) But K3/ L3 verifies distribution. More recent
quantum logics reject this principle, and are not finitely many-valued.28

3.4 Probability and Conditional Assertion

A somewhat different interpretation of K3 was proposed by de Finetti in his
‘La Logique de la Probabilité’ (1935).29 1 is interpreted as having subjective
probability 1 ; 0 is interpreted as having subjective probability 0 ; and X is
interpreted as uncertain.30 De Finetti tends to identify having probabilty 1
with truth (and dually for 0). That is, of course, dubious, even for a highly
idealised agent. Many things that are true and do not have probability 1.
(E.g., either ‘there is intelligent life in our galaxy which is not on Earth’ or
its negation.) But even passing this over, we hit an obvious problem. If
A has value X, so does ¬A, and so does A ∨ ¬A, which it should not have
on this understanding. Probabilities just do not work in this way. Indeed,
probability is not a truth function of any kind. If a is the value of a die rolled
at random, then ‘a is even’ and ‘a is ≤ 3’ both have probability 1/2, and, we

25As proved by Gödel (1933). See Priest (2008), 7.11.
26Reichenbach (1944), §§30, 32. See also Rescher (1969), p. 341.
27The situation is complicated by the fact that Reichenbach has three negations, only

one of which is ¬; and for one of others (‘complete negation’), A , one does have A ∧A
(though why this is some kind of negation is unclear, since if |A| = 1,

∣∣A∣∣ = X).
28See, e.g., Mittelstaedt (1978).
29English translation, Angell (1995). De Finetti does not say which values are to be

understood as designated, but it is pretty clear that it is just 1.
30Sometimes he also speaks of these as known to be true, known to be false, and doubtful.
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may suppose, are both true. But ‘a is 1 and a is even’ has probably 0, while
‘a is 1 and a ≤ 3’ has probability 1/6.

De Finetti augments the usual connectives with a new conditional. Let
us write this as A� B. He gives it the following truth table:31

� 1 X 0
1 1 X 0
X X X X
0 X X X

The idea is that if the antecedent is true the conditional states what the
consequent states. If not, it is ‘null’ as he puts it, or ‘defective’ as it is
sometimes put in the literature.32 That is, “all bets are off”.33 Following
some thoughts of Jeffrey (1963), and apparently with no knowledge of de
Finetti, the idea is worked out at greater length by Belnap (1973), though
(with reservations) he prefers the table:

� 1 X 0
1 1 X 0
X 1 X 0
0 X X X

Belnap calls X ‘non-assertive’, a species of being neither true nor false. A
different articulation of the same idea is to be found in Cooper (1968), where
he also terms the value X neither true nor false.

As one would expect from the discussion of conditionality and many-
valuedness in 2.2, as matrices for a conditional, these deliver implausible
properties. For example, if 1 is the only designated value, the de Finetti
matrix verifies:

• A� B ` B � A [if I shoot you, you will die; so if you die I will shoot
(shot?) you]

And both matrices verify:

31He appears to identify this with conditional probability though, since probability is
not a truth function, the matrices do not capture the way that conditional probability
works. (Thus, if Pr(A) = 0.5, Pr(A/A) = 1.) There are, of course well-known connections
between conditionals and conditional probability. See Edgington (2020) and, in the present
context, Cruz and Oliver (202+).

32E.g., Over and Baratgin (2017).
33Indeed, he motivates the table in terms of conditional bets.
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• A� B ` B [if I shoot you, you will die; so you will die]

• ¬(A � B) ` ¬B [it is not the case that if I shoot you Donald Trump
will die; so Donald Trump will not die

whilst neither matrix verifies:

• ` A� A ∨B [if it’s red, it’s either red or blue]

Of course, one can wring the changes by defining validity in other ways, but
all have problematic consequences.34

3.5 Varieties of Designated X

Let us now turn to the same matter where X is b—that is, where one is
thinking of X as the value of sentences that are both true and false (di-
aletheias). Some possibilities here are as follows. (Again, I make no claim to
the exhaustiveness of the list, or the plausibility of its members.)

It’s probably fair to say that the candidate that has received the most
air-time over the last 40 years concerns the paradoxes of self-reference. In
these,35 we have an apparently cogent argument—concerning notions that are
semantic, set theoretic, intensional, and maybe of some other kinds—which
ends in a contradiction, A ∧ ¬A.36 The orthodox view is that there is some-
thing wrong with the arguments; a different view is that there is nothing
wrong with them: they just establish that something is both true and false.
This is a view that was mooted by Priest and Routley,37 and was behind the
construction of P3.

Further candidates for dialetheias are contradictions related to other fa-
miliar paradoxes. Sorites paradoxes are one such kind. Since statements in
the borderline area of sorites progressions seem to be symmetrically poised
between truth and falsity, one may take them to be, not neither true nor
false, but both true and false.38 The sorites arguments then break down, but
for different reasons.

Another relevant kind of paradox comprises the paradoxes of motion—and
more generally, change.39 For example, Zeno’s arrow paradox notes that

34See Égré, Rossi, and Sprenger (2021). See, further, Sprenger (202+).
35Or at least most of them: Curry’s paradox is not of this kind.
36See Bolander (2017).
37Priest (1979) and Routley (1977).
38See, e.g., Hyde (1997) and Priest (2019a).
39See Priest (1987), chs. 11, 12.
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at any instant of its journey, since it is an instant, an arrow makes zero
progress. It then concludes that the arrow can make no progress at all, since
the progress made on the journey is the sum of the progresses made at each
instant. One solution to the paradox is to hold that the arrow does make
progress at an instant. Just because it is in motion, it has already gone a
little bit further than where it is. So it is both there and not there.40

Another example of a dialetheia that has been offered—which one might
or might not think of as paradoxical—arises in Christian thought. It is
standard theology to hold that Christ was both fully divine and fully human,
where these are contradictory predicates. Orthodox Christian thinking tries
to defuse this contradiction in some way or other, but a more recent approach
is simply to claim that Christ was dialetheic in this regard.41 Of course, an
example of this kind is hostage to certain religious views; but Christianity is
not the only religion that produces apparently paradoxical claims.

Candidates for dialetheias that have nothing much to do with paradox
concern laws and other systems of norms. Thus, for example, one might have
laws of the form:

• Anyone in category X may do so and so

• Anyone in category Y may not do so and so

Things are perfectly consistent as long as there is no one in both categories.
But if at some stage there is a person in categories X and Y , that person
both may and may not do so and so—at least until the law is changed.42

A number of the examples above concern boundaries in one way or an-
other. Now, boundaries are contradictory entities almost by definition, since
they both join and separate their two sides. (Interestingly, the English word
‘cleave’ has both these meanings.) A final example of dialetheias may there-
fore be delivered by a general theory of boundaries, according to which a
point on a boundary is on one side of it, and so not on the other, for both of
the sides!43

40This, incidentally, was Hegel’s solution to the paradox, and is part of a much larger
story about the role of contradictions in Hegel’s philosophy. See Priest (1990).

41See Beall (2021).
42See, further, Priest (1987), ch. 13, and Priest (2022).
43See Weber and Cotnoir (2015) and Weber (2021), esp. 1.3.
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3.6 Information-Theoretic Interpretations

Some philosophers sympathetic to many-valued logic have balked at a reading
of X as alethic, but have endorsed an information-theoretic understanding of
the value. That is, ‘A is b’ is understood as having been told both A and
¬A; one has both in one’s data base, as it were. ‘A is n’ is understood as
having been told neither A nor ¬A; one has neither A nor ¬A in one’s data
base. The suggestion is made concerning FDE, for example, by Belnap.44

A problem with this interpretation is the same as that with de Finetti’s:
it does not sit well with the behavior of the connectives. For a start, one
might have been told A by one source, and ¬A by another. But both sources
might reject A ∧ ¬A. So A has the value b, but A ∧ ¬A does not even get
the value 1. Even more obviously, one can have been told that A ∨B whilst
having been told neither A nor B. So A∨B can get the value 1 whilst neither
A nor B does.45

Kleene also suggests an information-theoretic interpretation of n, not as
undefined, but as unknown.46 But we have the same problem. Thus, one
can know that A ∨ B without knowing either A or B. (Just let B be ¬A.)
Similarly, Brady suggests that A taking the value b means that both A and
¬A are provable; and A taking the value n means that neither A nor ¬A is
provable. But at least classically, one can prove A ∨ B without proving A
or B—in which case, A ∨ B can have value 1 when neither A nor B does.
Dually, one can prove ¬(A∧B) when one can prove neither ¬A nor ¬B. So
A ∧B can have the value 0, though neither A nor B does.

Information (what one is told, what one knows) is just not truth-functional—even
if there are more than two truth values. If one has to pool information from
different sources, the most sensible thing to do, it seems to me, is use a
discursive logic, which is not truth-functional.47

Of course, we may restrict our data base to atomic sentences.48 We
then have to decide what to believe about compound sentences. Thus, sup-
pose—to illustrate a 3-valued procedure—that we have produced our data
base from the information provided by a number of (classically minded) “ex-

44In ‘How a Computer Should Think’, and ‘A Useful Four-Valued Logic’, pp. 35–54 and
55–76 of Omori and Wansing (2019).

45Perhaps one might attempt to overcome the first issue using supervaluations, but this
does nothing to help the second.

46Kleene (1952), p. 335.
47See Priest (2002), 4.2.
48As suggested by Fitting (1994).
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perts”. Without loss of generality, we may suppose that there are just two.
Each is asked whether A and answers either true or false. If both say true,
we mark the sentence 1; if both say false, we mark it 0. And if they disagree,
we mark it X. If we adopt a conservative policy, we may interpret X as n,
since we have an under-supply of information. If we adopt a liberal policy,
we may interpret X as b, since we have an over-supply of information. In
either case we use the K3/P3 matrices to compute the values of compound
sentences. In both cases, however, we may end up with things that are dif-
ferent from what our two experts think. Thus, despite their differences, both
experts will think that A ∨ ¬A is true, though the conservative policy may
value it as X, neither true nor false. And both will think that A∧¬A is false,
though the liberal policy may mark it X, both true and false. And if we are
not prepared to accept the experts’ views about these things, why should we
accept their views about atomic sentences?

3.7 Two Final Comments

Before we move on to the second general strategy for handling X, let me
make two final comments.

[I] The intersection of K3 and P3 is itself a natural logic. Let us call this
K3P3.

49 So:

• Σ |=K3P3 A iff Σ |=K3 A and Σ |=P3 A

One may think of this as a logic where X is ambiguous. Specifically, it is
what one would get if one took it that X could be either n or b, the valid
inferences being the ones that hold in both possibilities.

[II] There is a generalisation of many-valued logic in which there are
two sets of designated values, Dπ,Dκ, one for the premises and one for the
conclusion, so that:

• Σ |= A iff for all ν, if ν(B) ∈ Dπ, for all B ∈ Σ, then ν(A) ∈ Dκ

In a series of papers, Cobreros, Égré, Ripley, and van Rooij (hereafter CERR)
apply this technique with the values and matrices of K3/P3, and take Dπ =

49Dunn (2000) calls it RMfde. Proof theoretically, it is obtained from FDE by adding
the rule of inference A ∧ ¬A ` B ∨ ¬B.
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{1} and Dκ = {1,X}.50 The logic has come to be known as ST (Strict-
Tolerant) and one may show that an inference is valid in ST iff it is valid in
classical logic. However valid classical metainferences, notably Cut, fail.

The construction itself tells us nothing about how to interpret X. We
know that some As are such that both A and ¬A can have that value.
CERR’s examples of such As are paradoxical sentences of self-reference, and
borderline cases of vague predicates. We have already met these in connec-
tion with K3 and P3, and so this adds nothing new to the present issue.51

Perhaps the most interesting philosophical question specific to this con-
struction is why one might change designated values from premises to con-
clusion in the way required. It is not clear to me that there is a good answer
to this question. However, the matter is not one that is relevant here.52

4 Infectious Xs

4.1 B3 and H3

Let us now turn to the second general strategy for handling X. This is to
take X to be infectious, in the sense that if it is the value of any sub-formula
of A, it is the value of A. The truth tables for our connectives then become
as follows:

¬
1 0
X X
0 1

∧ 1 X 0
1 1 X 0
X X X X
0 0 X 0

∨ 1 X 0
1 1 X 1
X X X X
0 1 X 0

The crucial matter now is whether one takes X to be undesignated or des-
ignated. In the first case we have the logic B3; in the second, we have the
logic H3.

50See, e.g., Cobreros, Égré, Ripley, and van Rooij (2013), (2015).
51In some papers, X is glossed as tolerantly assertible, as contrasted with 1, which is

glossed as strictly assertible. This suggests a connection with speech act theory; but what
exactly tolerant assertibility might be, beyond being able to endorse both A and ¬A, is
unclear. For some discussion, see Cobreros, Égré, Ripley, and van Rooij (2015), 21.2.3.

52For a full discussion of matters, see Priest (202+).
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4.2 Varieties of Undesignated X

The first person to suggest the logic B3 was Bochvar in a paper in Russian
of 1937.53

What are the candidate interpretations for X in B3? Bochvar himself in-
terprets X as meaningless (though he sometimes glosses this as neither true
nor false). This makes it plausible to see the value as infectious, since it is
natural to suppose that a sentence with meaningless parts is itself meaning-
less. Bochvar gives as examples of meaningless sentences those self-referential
sentences that arise in the paradoxes.

B3 and various modifications are also endorsed by Goddard and Rout-
ley, who take X to indicate a species of meaninglessness, and call it non-
significant.54 They give as examples things like category mistakes (e.g., ‘The
number 3 is red’), and Wittgenstein’s “hidden nonsense” (e.g., ‘It is 18.00h
on the Sun’).55 It might be thought that these things should not be allowed
to occur in a well-formed language, but the fact that the nonsense may be
“hidden”, means that there may be no effective way of ruling such things out;
and for this reason or others, we may find ourselves reasoning with them.56

Smiley (1960) endorses B3 and reads the infectious value as neither true
nor false. He does this by implementing a Fregean understanding of the
notion. According to Frege, the referent of a name is its bearer, and the
referent of a sentence is its truth value. Moreover, the referent of any lin-
guistic phrase is a function of the referents of its components (except when
the referent occurs in what we would now call an intensional context). It
follows that any sentence that contains a non-denoting name has no truth
value; and if a subsentence of a sentence has no truth value, neither does the
sentence. So X behaves infectiously. Assuming that presupposition-failure is
infectious, it may also be taken to motivate B3.

57

53Not translated into English till Bergmann (1981), though the basic ideas of the paper
were known to English-speaking logicians due to a review by Church (1939). See also
Rescher (1969), pp. 29–33.

54See Goddard and Routley (1973), ch. 5. This book is now hard to find. A brief
summary of it can be found in Szmuc and Omori (2018), who show how X, as a species of
lacking a value, can be interpreted using the notion of plurivalent logic (where sentences
may take any number of values—including none). A brief discussion of the controversy
which the book generated can be found in Szmuc and Ferguson (2021).

55Goddard and Routley (1975), §§1.4, 1.5.
56See, further, Routley (1969).
57On presupposition-failure, see also Spector (202+).
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Kleene (1952), p. 334 also briefly specifies the logic B3. (So the logic
is sometimes known as ‘weak Kleene’, as opposed to K3, which is ‘strong
Kleene’.) Again, computational issues are driving the interpretation. To see
how, suppose that we have a compound sentence, say, for example, A ∨ B.
To compute its value we proceed by, first, computing the values of A and
of B, and then, second, using classical truth tables. But if one or other
of these computations never terminates, so that the value of A or of B is
undefined, we never get around to the second stage, so the value of the whole
is undefined. (If we applied truth tables as soon as we found the value of A
(or B) to be 1, we would get, instead, the truth table of K3 for ∨. Dually
for ∧.)

A slight variation on this idea is that in determining the value of A∨B (or
A∧B) we compute the value of the left component first.58 If we obtain a value
that is sufficient to determine the classical truth value of the compound, we
assign that value and do no more. If the value obtained is not thus sufficient,
we then compute the value of the second component.59 In either case, a
computation that never terminates will result in an undefined value. As is
easy to see, the tables for conjunction and disjunction are now as follows:

∧L 1 X 0
1 1 X 0
X X X X
0 0 0 0

∨L 1 X 0
1 1 1 1
X X X X
0 1 X 0

The connectives are clearly asymmetric (in the sense that A |= A∨B but B 6|=
A∨B—and dually for conjunction). And if we had deployed a procedure that
computed the second component first, we would have obtained connectives
with the reversed asymmetry, ∨R and ∨R. These matrices are also to be
found as part of a theory of presupposition failure in Peters (1979).60 The
asymmetry naturally arises if we think of processing compound sentences,
component by component, left-first.61 This is perhaps more natural in the
context of linguistics than logic.

Fitting formalises the computational procedure behind B3 as follows. We

58As suggested by McCarty (1963), and formalised in the following way in Avron and
Konikowska (2009).

59In computer science terminology, this is often called ‘lazy evaluation’, since we do no
more computation than is necessary.

60Krahmer (1998), §4.2.2, calls the logic ‘Middle Kleene’.
61See George (2014). See also Beaver and Krahmer (2001).
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can define a monadic guard operator, G, which tests to see whether the
computation of the value of a formula terminates. Essentially, we just run
the computation, and see whether it stops. G will then have the table:

G
1 1
X X
0 1

One may then think of conjunction in B3 as GA ∧L (GB ∧L (A ∧ B))—the
the final conjunction being that of K3—or in fact, any regular conjunction.
Similarly, one will obtain the disjunction of B3 with GA∧L (GB ∧L (A∨B))
(given a similar understanding of the disjunction).62

But why might one want to insist that the computations of the values of
A and B severally terminate? Ferguson suggests the following idea.63 The
computation of the value of one of the conjuncts (or disjuncts), might not just
fail to terminate, but might actually crash. For example, in computation,
before a computation starts, the variables need to be “declared”. That is, a
memory location in the computer needs to be assigned. If this is not done,
then when the variable is called during the computation, the computation
will crash.

For comparison, think of a sentence of natural language with an indexical.
For example, ‘She is happy’. This has no meaning until a denotation is fixed
for ‘she’. In a certain sense, the sentence is meaningless until this is done.
One might then argue that the same applies to any grammatical compound
of this, e.g., ‘London is in the UK and she is happy’. It could be said that
such sentences expresses no proposition.64

In the same way, when the computation of one of the components of a
formula crashes, the very notion of the program having an output has no
well-defined computational meaning. Clearly, we are back with the thought
that X expresses a species of meaninglessness.

62Fitting introduced his guard operator as a primitive in (1994), §5. In (2006), §4.2, he
shows how it may be defined in the context of the theory of bilattices.

63Ferguson (2014). This and all the other sole-authored papers by Ferguson referred to
in what follows appear, in sometimes extended form, in Ferguson (2017), to which §4 of
this essay is heavily indebted.

64Ferguson (2016) also considers the case where, because of storage issues, a program
inadvertently overwrites a variable. The indexical analogue of this is when the denotation
of the indexical is changed mid-reasoning.
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There is also a close connection between an infectious X and logics of
“analytic implication” proposed by Parry, and later by Angell.65 These are
logics in which the inference A ` A ∨ B fails, the rationale being that the
conclusion of an inference should not introduce concepts that are not in the
premise.66

Deutsch67 uses B3 to invalidate the inference A ` A ∨ B. Later in the
thesis (p. 48), he considers the logic obtained by adding b to the values, and
proves that the logic then satisfies the strong variable-sharing condition: if
A ` B then every propositional parameter in B occurs in A.68 This suggests
another interpretation of X. One might suppose that some of the sentences
in the language have concepts familiar to a reasoning agent, and others are
alien (in the way that the notion of a black hole or the internet are alien
to a Medieval monk). X can then be interpreted as the value of a sentence
with alien concepts. True, some such sentences might still be true, but the
consequence relation can now be thought of as meaning ‘if all the premises
are true and expressed in non-alien concepts, so is the conclusion’.

In a similar spirit, Oller (1999), who uses the same 4-valued logic, in-
terprets A having the value X as having no information about A. Since he
is also working in the context of Parry-style logics, one might interpret the
information in question as of a conceptually inaccessible kind. The same idea
can obviously be applied to the 1/X /0 part of the logic, B3.

A similar idea is to be found in Beall (2016). A discourse is about some-
thing or things. Call this its topic. Not all the sentences in which a discourse
is conducted will be about that topic. For example, if we are discussing the
capital city of France, then statements about Beijing are off topic. Beall
suggests that we interpret X as the value of statements that are off topic.
(So 1 is being true and on topic; and 0 is being false and on topic.) Given
that a compound sentence is about whatever its components are about, it is
natural to suppose that X is infections. The consequence relation is now not
one of preserving truth, but of preserving truth that is on topic.69

65E.g., Parry (1932), (1989); Angell (1977), (1989).
66For a detailed investigation of these logics and the connection with an infectious third

value, see Ferguson (2015a).
67Deutsch (1981), p. 9.
68Parry calls this the Proscriptive Principle. On the connection between Fitting’s guard

operator in the context of bilattices, and this logic, see Ferguson (2015a). If one adds n
to the values as well, one obtains another analytic implication. See Ferguson (2016).

69Beall’s idea is generalised to a natural 4-valued logic in Song, Omori, Arenhart, and
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A final suggestion for an interpretation of X is ‘ineffable’. It is natural
to take this to be infectious, since if something is ineffable, so is anything
which contains it. If one follows this path, it makes no sense to interpret
the bearers of semantic values as sentences: sentences wear their effability on
their face. They have to be interpreted as propositions or states of affairs.70

Again, in this case one might suggest that on this understanding, it does
not make sense for X to be undesignated: ineffable propositions might still
be true—or ineffable states of affairs might be the ontological equivalent:
existent.71 But the consequence relation can now be thought of as meaning:
‘if all the premises are true and effable, so is the conclusion’.72

4.3 Varieties of Designated X

The other possibility is that X is both infectious and designated, which gives
the logic H3. This was first formulated by Halldén. Halldén’s work is perhaps
not as well known as it should be, and since the logic is paraconsistent, it is
more often called ‘Paraconsistent Weak Kleene’.73

How is such an X to be interpreted? As the title of his work suggests,
Halldén suggests that it should be interpreted as the value of things that
are nonsense in some sense. He gives as examples of such things the para-
doxical statements of self-reference, and borderline cases of vague predicates.
Perhaps it is reasonable to take such statements to have an infectious value
(though there is always the question of why the tables of K3/P3 might not
be more appropriate). What is not clear is why X should be designated.
It would seem bizarre for a valid inference with a true premise to have a
meaningless conclusion.74 Halldén, it must be said, provides no very good
reason.75

Tojo (202+), by splitting Beall’s third value into two: true and T and false and T, where
T is off topic. Some other possible interpretations of T (e.g., known) are suggested in
Omori (202+).

70Further, see Priest (2018), ch. 5. Actually, the logic there is 5-valued. The values are
the four FDE values, and an infectious X. However, again, B3 is its 1/X/0 fragment.

71Kapsner (2020).
72See Priest (2020), 3.4.
73See, e.g., Ciuni and Carrara (2016).
74As noted by Goddard and Routley (1975), p. 274.
75As noted by Goddard and Routley (1975), §5.5, who, however, consider both logics

in which X is designated (“C logics”) and those where it is not (“S logics”) for reasons of
technical comparison (p. 276).

22



Of course, given that X is likely to be interpreted as some species of
non-falsity, the definition of validity amounts to preservation of non-falsity.
But the question is what X could mean such that it makes this a sensible
notion of validity. None of the candidates for X which we looked at in the
last subsection seem to provide this.

In Chapter 5 of Time and Modality,76 Prior introduces a system of tense/modal
logic he calls Q. The values of his logic are ω-sequences of the values 1, 0,
and X. The points of the ω-sequence are thought of as points in time, and
the values are the values of statements at each time. At each point, the val-
ues work in a B3/H3 fashion. And X behaves in a designated fashion. Prior
thinks that there are some things about the future that cannot be said. (For
example, one cannot refer to a future object, though one can do so when it
comes into existence.) He reads the value X as true but inexpressible—and
so we have a species of temporal ineffability. That explains why it should be
both designated and infectious. The oddity of this interpretation is that one
would expect a fourth value, Y, meaning false but inexpressible, where nega-
tion toggles between X and Y. The negation of a true inexpressible statement
is hardly true and inexpressible.

But note that there is no 4-valued logic that corresponds to B3 and H3

in the way that FDE corresponds to K3 and P3. It cannot be the case that
both X and Y are infectious.77

4.4 Information-Theoretic Interpretations

Just as in the case of K3/P3, one might suggest reading the semantic values
of B3/H3 in an information-theoretic way. However, there would still be the
same problems. Information values are just not truth-functional.

As in 3.6, we could elect to restrict our information to atomic sentences
only, and then decide what it is rational to believe on the basis of this.
However, instead of using theK3/P3 matrices, we could, for one of the reasons
considered above, decide to use the B3/H3 matrices.

For example, suppose we abstract the entries of our data base from two
“experts”, as described in 3.6—recall that our experts are classical. The
conservative policy will then justify taking X to be undesignated (B3); and

76Prior (1957).
77Some 4-valued logics where one of X and Y is infections and the other is “almost

infections” are discussed in Ciuni, Ferguson, and Szmuc (2019), and Da Ré, Pailos, and
Szmuc (2020).
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the liberal policy will justify taking it to be designated (H3). On this in-
terpretation X is a warning label, infecting everything it touches. With the
conservative policy, it means something like ‘Alert: information underdeter-
mined’. With the liberal policy, it means something like ‘Alert: information
overdetermined’.78

But in any case, we still face exactly the same problem we had with
K3/P3. Namely, the result may conflict what our agents actually hold about
compound sentences. For example, it could be the case that one agent thinks
that A is true and that B is false; the other has it the other way round. Then
despite their differences, both will think that A∨B is simply true, whilst the
policy makes it X. And both will think that A ∧ B is simply false, though
the policy makes it X.

4.5 Two Final Comments

Let me end with two final comments, corresponding to those made in 3.6.
[I] The intersection of B3 and H3 is itself a natural logic, though as far as

I am aware, it is not to be found in the literature. Let us call this B3H3. So:

• Σ |=B3H3 A iff Σ |=B3 A and Σ |=H3 A

One may think of this as a logic where X is ambiguous between designation
and non-designation—whatever that means.

[II] One may also use the techniques of different designated values for
premises and conclusions with B3 and H3, as well as with K3 and P3. Szmuc
and Ferguson79 show that this logic has exactly the same consequence relation
as classical logic—though metainferences, notably Cut, still fails for the same
reason.

However, the problem of why one should define consequence in this way
remains. In fact it is worse, since there is even less reason to allow an only
true premise to have a meaningless conclusion than there is for allowing it
to have true and false conclusion.

78This is a simplified version of the interpretation suggested by Szmuc (2019). Imple-
menting a more general approach, he reads off his 3 values in a more complicated way, on
the basis of judgements of “experts” that are themselves 3-valued. X may be thought of
as either neither true nor false or both true and false. Whichever the case, A will take the
value X if one of our two agents says 1 and the other says 0 or if either of them says X.
However, the extra complexity does not add much to the present matter. It is the duality
between under- and over-determination that is really doing the work.

79Szmuc and Ferguson (2021).
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5 Conclusion

We have now met four well known 3-valued logics for our three connectives:
K3, P3, B3, and H3 (or six if one counts the two logics with asymmetric con-
junction and disjunction). We have looked at the ways in which it is natural
to interpret the “third” value in each case—indeed, ways which motivated
the construction of these logics in some cases.

Philosophically, the most problematic of the four these logics is H3. In
my opinion, we still want for a plausible philosophical interpretation of X in
this case.

Of course, there are also the other 46,871 (= 3×53×53−4) combinations
of matrices. Doubtless, for many (maybe most) of these, X has no natural
philosophical interpretation. But it would be surprising if for none of them
did it have one. Time will tell if such are to be found.

6 Appendix: Proof Systems for Four 3-Valued

Logics

In this appendix I will give Prawitz-style natural deduction systems for the
four main 3-valued logics we have met. A bar over an assumption means that
the rule discharges it, and a double line in an inference means that it goes
both ways. A† is any formula containing all the propositional parameters in
A. Proofs of soundness and completeness are given in Priest (2019b).

The rules in play are the following:

• ∧I:
A B
A ∧B

• ∧E:
A ∧B A ∧B
A B

• ∨I:
A

A ∨B
B

A ∨B
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• ∨E:
A B
...

...
A ∨B C C

C

• DeM:
¬(A ∨B) ¬(A ∧B)

¬A ∧ ¬B ¬A ∨ ¬B

• DN:
A

¬¬A

• Excluded Middle (EM):

B ∨ ¬B

• Explosion:
A ∧ ¬A
B

• Weak ∨I:
A B† A† B

A ∨B A ∨B

• Weak ∧E:
A ∧B
A ∨B†

A ∧B
A† ∨B

• Weak EM:
A†

A ∨ ¬A

• Weak Explosion:
A ¬A
A†

The rules for the various systems are as follows:

K3: ∧I, ∧E, ∨I, ∨E, DeM, DN, and Explosion.
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P3: ∧I, ∧E, ∨I, ∨E, DeM, DN, and EM.

B3: ∧I, ∧E, Weak ∨I, ∨E, DeM, DN, Explosion, and Weak EM.

H3: ∧I, Weak ∧E, ∨I, ∨E, DeM, DN, Weak Explosion, and EM.
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