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Abstract

As far as disputes in the philosophy of pure mathematics goes,
these are usually between classical mathematics, intuitionist mathe-
matics, paraconsistent mathematics, and so on. My own view is that of
a mathematical pluralist: all these different kinds of mathematics are
equally legitimate. Applied mathematics is a different matter. In this,
a piece of pure mathematics is applied in an empirical area, such as
physics, biology, or economics. There can then certainly be a disputes
about what the correct pure mathematics to apply is. Such disputes
may be settled by the standard criteria of scientific theory selection
(adequacy of empirical predications, simplicity, etc.) But what, ex-
actly is it to apply a piece of pure mathematics? How is mathematics
applied? By and large, philosophers of mathematics have cared more
about pure mathematics than applied mathematics, and not a lot of
thought has gone into this question. In this paper I will address the
issue and some of its implications.

Key Words : mathematical pluralism, pure mathematics, applied mathemat-
ics, Quine, Field, Wigner
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1 Introduction: Disagreements in Mathemat-

ics

The distinction between pure and applied mathematics is a crucial one for the
philosophy of mathematics. Pure mathematics is an investigation of mathe-
matical structures in and of themselves. Applied mathematics is the use of
such structures in the investigation of other things, in physics, economics,
linguistics, or whatever. Of course there is a connection between the two
activities. For a start, some parts of pure mathematics (such as the origi-
nal infinitesimal calculus) were developed specifically with an eye on their
applications. But in principle, and even mostly in practice, the two sorts of
investigations are quite distinct.

In the philosophy of mathematics, however, understanding the nature
of applied mathematics has been a somewhat poor cousin of understanding
pure mathematics, since philosophers of mathematics have normally been
logicians, not physicists or economists. Typically, applied mathematics has
been taken as of subsidiary importance, invoked to tell us something about
pure mathematics—its handmaiden, as it were. In particular, the question
‘What, exactly, is it to apply a piece of mathematics?’ has not been given
the attention it deserves. The aim of this paper is address that question
squarely. Given the complexity of a number of the issues, a single paper can
hardly address everything relevant to the question. But I hope, at least, that
what follows will provide the outline of an adequate answer to that question.1

First, however, let me explain what this has to do with the topic of this
volume. There can certainly be disputes in the area of pure mathematics.
Thus, we often have some informal mathematical notion, and there is an issue
about how best to formalise it. What it is for a function to be continuous,
or a procedure to be algorithmic, are clear examples of this.2 Another is the
notion of what it is to be a polygon, explored by Lakatos in his Proofs and
Refutations.3

1Talks based on this paper were given at the (online) workshop Disagreement in Math-
ematics, Free University of Amsterdam and the University of Hamburg, June 2021, and
at Ohio State University, October 2021. I am grateful to members of the audiences for
their helpful comments. I’m also very grateful to Hartry Field and Mel Fitting for their
comments on earlier drafts of the paper. Finally, I’d like to thank three referees for this
journal for their helpful comments.

2See, respectively, Bell (2013) and Copeland (2017).
3Lakatos (1976).
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Once a notion is formalised, there can still be disagreements. Most math-
ematical proofs are not formalised, and there can be issues about whether
all the steps can be filled in correctly. See, for example the issue over the
correctness of Wiles’ proof of Fermat’s Last Theorem,4 or the much more
acrimonious debate over the correctness of the proof of the ABC conjecture
offered by Mochizuki.5

However, assuming mathematical pluralism, which I will explain in a
moment, what there cannot be is a dispute about whether the mathematical
structure isolated in the formalisation is, as a mathematical structure, itself
right or wrong. All structures are equally legitimate.

Matters are quite different with applied mathematics. Here, one has to
choose a pure mathematical structure to apply; and there certainly can be
a dispute over what the correct structure is—which one is right or wrong,
or at least, which one is best. This is, as we shall see, an issue in scientific
theory-choice.

2 (Pure) Mathematical Pluralism

Before we turn to applied mathematics itself, let me say a word about pure
mathematics; for what I have to say about applied mathematics, I shall say
against the background of mathematical pluralism in pure mathematics. I
shall not defend this view here, but let me at least explain it.6

Start with the following fact. There are many different geometries: Eu-
clidean, spherical, projective, hyperbolic, Riemannian, etc.7 All are per-
fectly good mathematical structures (or families of structures). They have
their own axiomatizations, models, theorems, and so on. There is no sense
in which any of them is right and the others wrong. Perhaps some may be
more mathematically interesting, powerful, have more applications, etc, than
others; but that is a different matter. All this is hardly contentious.

It might be suggested that, though we have a plurality here, there is
an underlying unity, in that all of the geometries can be defined within a
single mathematical structure: Zermelo-Fraenkel set theory (with the Axiom
of Choice), ZFC. Such reductionism is still, perhaps the standard view in

4See Singh (1997).
5See, e.g., Klarreich (2018).
6Mathematical pluralism is defended at length in Priest (2013), (2019).
7For some discussion, see Gray (2017).
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the philosophy of mathematics, though it has always been contentious. From
the perspective of category theory, for example, things look quite different.
ZFC is, itself, just one framework amongst many.

But in any case, the view is no longer sustainable. It is not just that it
is hard to find a framework based on classical logic to which all other parts
of mathematics can be reduced; we now know that there are mathematical
structures based on non-classical logics which cannot be formulated in terms
of classical logic, on pain of triviality. These are things like the intuitionist
theory of smooth infinitesimals, various branches of inconsistent mathemat-
ics, and so on.8 All of these have their axiomatisations, models, etc; and the
structures have clear mathematical interest. Qua pure mathematical struc-
tures, they are all equally good; there is no sense in which one is right and the
others wrong. It may be the case that some are more rich, interesting, have
more applications, etc, than others. But again, that is a different matter.

3 The Application of Mathematics

Matters of equal correctness are entirely different when we turn to applied
mathematics. In this, a branch of mathematics or a mathematical structure
is chosen and applied in an analysis of some natural or social phenomenon.
That is, applied mathematics is the use of a pure mathematical structure
in the investigation of other things, in physics, economics, linguistics, or
whatever. There is then a question of which structure is the right one for the
job—or at least which ones are better than others. What exactly this means,
we will come to in due course. At any rate, pure mathematical structures
are not all equally good in this regard.

Thus, geometry has what one might call a canonical application: charting
the structure of space (or maybe nowadays, space/time). For most of the
history of mathematics it was assumed that Euclidean geometry was the
correct geometry for that application; Euclidean geometry was developed
for just that purpose. Indeed, in the history or mathematics until the 19th
Century it is hard to disentangle this geometry from its application. But of
course, Kant notwithstanding, we now know better. The spatial structure
of the cosmos is not Euclidean; it is not even one of constant curvature.
Euclidean geometry was not the right geometry for the purpose. Naturally,
a geometry can have many applications, and this by no means implies that

8See, e.g., Shapiro (2014), Priest (2019), Bell (1998), Mortensen (2017).
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Euclidean geometry is not the right geometry for some other application.
What can be right for one application can be wrong for another, and vice
versa.

Thus, in Quantum Mechanics there are two well known kinds of statistics,
Bose-Einstein and Fermi-Dirac, each of which implements a different kind of
probability distribution for the entities involved.9 And it turns out that the
different kinds of statistics are appropriate for different kinds of particles.
Bose-Einstein statistics works for Bosons; Fermi-Dirac statistics works for
Fermions.

Hence, given any potential application, there is the question of which
mathematical structure of a certain kind is best for the job. And conversely,
given different mathematical structures of the same kind, there is the question
of which application or applications they are appropriate for.

Indeed, there is a question of whether they have any applications at all.
Some do not. There is, for example, as far as I know, no known application of
the theory of large cardinals. And some branches of pure mathematics were
found to have an application only well after their development: for example,
the theory of electricity for complex numbers, and Special Relativity for
group theory.

4 Two Examples

Against this background, we can now turn to our central issue. How, exactly,
does one apply a pure mathematical structure? Let us start with a couple of
simple examples.

The first uses Ohm’s law to determine the current in a circuit. Suppose
we have a simple electrical circuit with a battery and a resistor.

9See, e.g., French (2019).
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If the voltage, v, produced by the battery is 6 volts, and the resistance, r, of
the resistor is 2 ohms. What current, i (in amps), flows? Ohm’s law, v = ri,
tells us that it is 3. What is going on here?

First, we start with a state of affairs in the physical world. This will
involve some wires and other bits of electrical paraphernalia. Understanding
what is going on, and making predictions about it, will involve the following
steps. (The sequence here is not a temporal one.) First, we need to invoke
three physical quantities: the current flowing, I, the resistance, R, and the
voltage in the circuit, V . Call the set of physical quantities, P. Next, these
have to be assigned some mathematical values. Hence, there are three func-
tional expressions, µi, µr, µv, such that µi means ‘the value in amps of’, µr

means ‘the value in ohms of’, and µv means ‘the value in volts of’. (I will
often omit the subscripts on ‘µ’ when they are clear from the context.) In
our case, the mathematical values are real numbers, members of R. So the
denotation of each µ is a map from P to R. We can now enunciate Ohm’s
Law:

• ∀V,R, I(F(V,R, I)→ µ(V ) = µ(R)× µ(I))

where F(V,R, I) states that V , R, and I are the quantities in an electrical
circuit. Finally, we have to determine exactly how the mathematical entities
and the operations on them work. In the case at hand, this is provided by
the mathematical structure of the classical reals, R, 〈R,+,×, 0, 1, <〉.

Now, in our present example, we have three particular quantities, V0,
R0, and I0, such that F(V0, R0, I0). Hence applying Ohm’s Law, we have
µ(V0) = µ(R0) × µ(I0). We also have µ(V0) = 6 and µ(R0) = 2. If we now
chose new terms, v, r, and i, for µ(V0), µ(R0), and µ(I0), respectively, we
have the equations:
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• v = r × i

• v = 6

• r = 2

Moving to the pure mathematical level, if these statements hold in R then
so does i = 3. That is, moving back to the empirical level again, µ(I0) = 3.
That is, the current in the circuit is 3 ohms.

Next, an example from economics.10 According to standard microeco-
nomics, other things being equal, in an equilibrium state, the price of a
commodity is the point where supply and demand balance.

Supply

p

a

Demand

p0

a0

So, given some good, let p be the price per unit, and a be the amount
produced. Suppose that for supply, p = a; and for demand, p = 6− a. Then
the equilibrium price per unit is given by the point, 〈p0, a0〉, where these lines
cross; that is, p0 is 3. What is going on here?

The situation we are dealing with concerns people who produce, and who
buy and sell things. To understand the situation, we need to invoke two
quantities, A, the amount produced, and P , the price. µ(A) ∈ R will be
the amount of A in, say, kilograms; µ(P ) ∈ R will be the price in, say,

10There may well, of course, be important differences between the natural and the social
sciences. As far as I can see, however, any such differences do no affect the points at issue
here. Indeed, I choose an example from the social sciences precisely to show that the
account of applied mathematics I am giving applies just as much to the social sciences as
to the natural sciences.
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dollars. But here we have two other things to consider, the causal relations
of supply and demand between these quantities. Let these be S and D,
respectively. Note that the appropriate mathematical structure is now the
second-order reals, and µ(S) and µ(D) are relations between reals. That is,
µ(S), µ(D) ⊆ R2. The Law of Supply and Demand tell us that:

• ∀A,P, S,D(F(A,P, S,D) → ∀x, y(〈x, y〉 ∈ µ(S) ∩ µ(D) → µ(A) =
x ∧ µ(P ) = y))

where A and P are the equilibrium values, and F(A,P, S,D) states that the
quantities concerned are in the appropriate relation (and we assume, for the
sake of simplicity that there is a unique point common to the two relations).

In the present situation, there are particular values, A0, P0, S0, D0, such
that F(A0, P0, S0, D0). Hence, we know that ∀x, y(〈x, y〉 ∈ µ(S0)∩ µ(D0)→
µ(A0) = x ∧ µ(P0) = y). We also know that µ(S0) = {〈x, y〉 : y = x} and
µ(D0) = {〈y, x〉 : y = 6 − x}. Let us now choose new terms a, p, s, d such
that s = µ(S0), d = µ(D0), a = µ(A0), p = µ(P0). Then we have the pure
mathematical statement:

• ∀x, y(〈x, y〉 ∈ {〈x, y〉 : y = x} ∩ {〈y, x〉 : y = 6− x} → a = x ∧ p = y)

Ascending to this level, if this statements holds in R, then so does p = 3.
That is, descending to the empirical level again, µ(P0) = 3. That is, the
equilibrium price is 3 dollars per kilogram.

5 The General Picture and its Ramifications

Bearing our examples in mind, I can now sketch the general situation involved
in applying mathematics.11

Let us call the topic to which we are applying mathematics, for want of
a better phrase, the “real world”. The real-world state of affairs will concern
various real-world quantities. The situation describing these and the laws
of nature can expressed by a set of statements, D, using the µ functional
terms. Pure mathematical statements, D′, concerning some structure, S,
are abstracted from these statement, ignoring the physical interpretation of
the mathematical quantities. Using what we know about S, we can infer

11The basic idea of this is to be found in Priest (2005), 7.8.
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some other statements, E ′, that hold in the structure. These can be “de-
abstracted”, bringing the physical interpretation—that is, µ—back into the
picture, to deliver some descriptions of the real-world situation, E. We may
depict this as follows:

D E

E ′D′

Real
World
Level

Pure
Mathematical

Level

Hence it is that we can use the pure mathematical structure to infer facts
about the “real world”.12

What takes us fromD′ to E ′ in this procedure is pure mathematics: proofs
concerning S. The rest of the picture is a matter of empirical discovery. That
this is so in the case of the scientific laws involved is, of course, clear. But the
finding of an appropriate mathematical structure, S, is, in principle, equally
an empirical discovery. This is exactly what the situation concerning the
replacement of Euclidean geometry by Riemannian geometry showed us.

How does one determine the correct (or best) mathematical structure
to be employed? µ-sentences may be subject to empirical testing by an
appropriate measuring procedure.13 For example, in the Ohm’s Law example,
we can test the claim that µ(I0) = 3 by using an ammeter. Thus if the truth
of this statement is already known, it may be explained. And if not, the
procedure may be used to confirm or refute the machinery employed to get

12This account bears notable similarities to the “inferential conception” of applied math-
ematics, described and advocated by Bueno and Colyvan (2011). (See esp. their diagram
on p. 353.) A main difference is that they take the transitions involved to be between
empirical phenomena and mathematical structures, whereas the account I give here takes
them to be between statements about these things. In the last analysis, however, this
difference may not be particulary significant.

13For a discussion of measurement in science, see Tal (2020).
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there. The correct mathematical structure for any kind of application is the
one that gives the best results in this way.

If one is some kind of non-realist about the domain of application, nothing
more matters. Of course, there is a question about why this piece of math-
ematics gives the right (or good) results. The standard realist answer14—to
which I am sympathetic—is that the mathematical structure tracks the real-
world structure.15 That is, we can read off facts about the real-world from
mathematics since the two configurations have the same structure.16 That
is, in our examples, ‘µ’ refers to a homomorphism. (It cannot be an isomor-
phism, since different physical quantities can have the same mathematical
value.)

Well, matters have to be a little more complicated than that. Often, the
appropriate mathematical structure is much more than an instrumentalist
black box, but the mathematical structure and the physical structure are
not exactly the same. For example, the mathematics can be continuous
while the physical system is discrete. Thus, in our example of supply and
demand, the real numbers are continuous, but the quantities produced will
normally be discrete. Or again: in the mathematics of fluid flow, continuous
mathematics is used, but we know that the fluids are composed of molecules,
and so are discrete. The mathematics may also ignore factors whose effect
is below the level of empirical significance (such as, maybe, the gravitation
effects of planets on the Sun).

In such cases, though the real-world and mathematical structures are not
the same, the one approximates the other, at least to the order of magnitude
with which we are concerned. How, exactly, to understand this matter is
a somewhat tricky issue; but fortunately, one that we do not need to go
into here. Note, however, that we do not have to give a mathematical proof
that the approximation is a good one. The fact that the application gives
the right results to an appropriate level of accuracy provides an a posteriori
demonstration that it does so.

Whatever one makes of these matters is not relevant to the main point

14See, e.g., Chakravartty (2017), 2.1.
15Essentially this account is defended in Pinnock (2004), where he calls it a structuralist

account. The account is discussed by Bueno and Colyvan (2011), where they call it a
mapping account. They argue there that it should be subsumed under what they call an
inferential conception of applied mathematics.

16In just the way that the Tractatus reads off the structure of the world from the
structure of the classical predicate calculus.

10



here, though, which is simply that one chooses the pure mathematical struc-
ture to apply which gives the best empirical results—however one theorises
that matter.

6 A Posteriori Mathematics

The example of geometry has already taught us that the pure mathematical
structure to be employed in the step from D′ to E ′ may not be the one we
would have expected, might have to revised in favour of something unex-
pected, and that what this is is an a posteriori matter. In this section, I
want to hammer that message home.

In the two examples of §4, the mathematical structure deployed was that
of the standard reals. However, there is no a priori reason why this has to
be the case. We might discover (or have discovered) that better predictions
for electrical quantities are made using operations on the real numbers where
multiplication is non-commutative. For example, this could be a structure
R′ = 〈R,+,×′, 0, 1, <〉, ×′ being defined as follows:

• if x > y then x×′ y is x× y

• if y ≥ x then x×′ y is x× y − y−x
r

where r is a large real number, representing, perhaps, some physical constant.
Nor does the underlying logic of a structure applied have to be classical

logic. There is no a priori reason why using the intuitionist reals might not
give better predictions than using the classical reals. Let me make the point
about using a mathematical structure with a non-classical logic with a more
detailed, entirely hypothetical, example. This concerns arithmetic.17

There are arithmetics (even axiomatic ones) which contain all the truths
in the (classical) standard model of arithmetic, and then more. These are
inconsistent, of course, but non-trivial. Their structure is now relatively well
understood.18 Take a simple one of these. In this, there there is a tail,
{0, 1, ...n − 1}, for some n > 0. The numbers in this behave consistently.
Then, for i ≥ n, the numbers cycle, so that for some period, p > 0, i + p =
i—and of course, i + p 6= i too. We might depict the sturucture thus (→ is

17I take this from Priest (2003).
18See, for example, Priest (1997) and (2000).
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the successor function):

0 → 1 → . . . → n → n+ 1
↑ ↓

n+ p− 1 ← . . .

How might such an arithmetic come to be applied? Let us suppose that
we predict a collision between a star and a huge planet. Using a standard
technique, we compute their masses as x1 and y1. Since masses of this kind
are, to within experimental error, the sum of the masses of the baryons
(protons and neutrons) in them, it will be convenient to take a unit of mea-
surement according to which a baryon has mass 1. In effect, therefore, these
figures measure the numbers of baryons in the masses. After the collision,
we measure the mass of the resulting (fused) body, and obtain the figure
z, where z is much less than x1 + y1. Naturally, our results are subject to
experimental error. But the difference is so large that it cannot possibly be
explained by this. We check our instruments, suspecting a fault, but cannot
find one; we check our computations for an error, but cannot find one.

Some days later, we have the chance to record another collision. We
record the masses before the collision. This time they are x2 and y2. Again,
after the collision, the mass appears to be z (the same as before), less than
x2 + y2. The first result was no aberration.

We investigate various ways of solving the anomaly. We might revise
the theories on which our measuring devices depend, but there may be no
obvious way of doing this. We could say that some baryons disappeared in
the collision; alternatively, we could suppose that under certain conditions
the mass of a baryon decreases. But either of these options seems to amount
to a rejection of the law of conservation of mass(-energy), which would seem
to be a rather unattractive course of action.

Then we realise that the results can be accommodated by supposing that
when we count baryons we have to use a non-classical arithmetic. (As noted,
we already know that different sorts of fundamental particles obey different
statistics. Baryons are certain kinds of fermion.) The empirical results can be
accommodated by using an inconsistent arithmetic of the kind just described,
where z is the the least inconsistent number, n, and p = 1. For in such an
arithmetic x1 +y1 = x2 +y2 = z, and our observations are explained without
having to assume that the mass of baryons has changed, or that any are lost
in the collisions.

12



The thought experiment can be continued in ways which make the ap-
plication of an inconsistent arithmetic even more apt—indeed, even accom-
modating the fact that if z′ > z then z′ = z—but we do not need to go into
the details here.19 Of course, these facts can be accommodated in a consis-
tent—though still highly non-standard—arithmetic. What you cannot have
in such an arithmetic is the rest of standard arithmetic; or even the fragment
axiomatised in Peano Arithmetic. And this rest may well be important in
applying the structure. At any rate, the point is made. There is nothing in
principle against applying such a paraconsistent arithmetic.

Truth itself—at least some part of it—may then be governed by a non-
classical logic. So even the logic we take to apply to the real world may end
up being revised for empirical reasons.

Let me summarise the picture of applied mathematics that has emerged
in the preceding discussion. In applying mathematics, one uses a pure mathe-
matical structure as depicted in the diagram of Section 5. The structure to be
used is the one which gives the right empirical results (whatever that means).
Sometimes, the pertinent pure mathematical structure will have arisen out
of some kind of real-world practice, making the distinction between the pure
structure and a certain application almost invisible.20 (Euclidean geometry
and natural-number arithmetic are cases in point.) That, however, provides
no guarantee that a different structure will not do that job better. (Geome-
try again illustrates.) Sometimes, a certain sort of application will occasion
the development of a whole new kind of pure mathematical structure which
seems to be right for doing the job in question. (The infinitesimal calculus
illustrates.21) Many pure mathematical structures were, however, produced
and investigated with no thought of application in mind. (The investigation
of higher infinitudes is a case in point.) Though sometimes it will turn out,
later, that such pure structures are just what seems to be required for a cer-
tain application. (Group theory and the Special Theory of Relativity provide
a case in point.) Historically, then, the connection between pure and applied
mathematics can be a somewhat tangled one. All the more reason to keep
the fundamentals of the relation between them straight.

19They can be found in Priest (2003), §7.
20On the genealogy of some mathematical concepts in certain human practices, see

Lakoff and Núñez (2000); and for further discussion, see Kant and Sarikaya (2021).
21For an illustration from contemporary mathematical biology, see Montévil (2018) and

Pérez-Escobar (2020).
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7 Comments on Three Philosophers: Quine,

Field, and Wigner

To round out the discussion, let me end with some comments on three notable
philosophers of mathematic, pointing out where, in the light of the preceding
account, they are right, and where they are wrong.

The first is Quine. Famously, according to Quine,22 claims of pure math-
ematics are verified (established as true) holistically, together with our em-
pirical scientific claims. And since they are true, and quantify over abstract
mathematical objects, these exist.23 The ontological claim, depending as
it does on the view that anything quantified over in a true statement ex-
ists—at least if the language is an appropriately regimented one—is highly
debatable.24 But set that matter aside here and concentrate just on the
epistemic claim.

It has many problems. The people who are best qualified to judge whether
a claim of pure mathematics is true are pure mathematicians; and they care
not at all about applications. What is important to them is proof. Next, as
noted, there are important parts of pure mathematics that have (as yet) no
empirical applications, such as the theory of large transfinite numbers, infini-
tary combinatorics, and the theory of surreal numbers.25 Next, some theories
can be applied in different areas. In some they are verified; in some, they
would not be. Thus, the pure mathematical theory of the Lambek Calculus
is verified when applied to grammatical parsing, but not when applied to
simplifying Boolean electrical circuits. Does this mean that the pure mathe-
matical statements are both true and false? Presumably not. As far as truth
goes, one application would have to be privileged. But any such privileging
is arbitrary.

But what underlies all these issues, as we may now see, is that the account

22Perhaps most notably in Quine (1951). See Colyvan (2001), esp. 2.5. For more on
Quine’s philosophy of mathematics see Hylton and Kemp (2019) and Priest (2010).

23This is sometimes known as ‘Quine’s indispensability argument’: abstract entities
exist because they are indispensable for science. See, e.g., Colyvan (2001). Note that the
plausibility of the ontological conclusion goes via the thought that we are justified in taking
the statements to be true. The existence of a God is indispensable for Christian theology;
but this provides no argument for the existence of God if the theological statements are
not true.

24See Priest (2005).
25On the last of these, see Knuth (1974).
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simply has the wrong take on applied mathematics. What gets confirmed
or otherwise by an application are the statements which describe the real
world—the likes of our D and E above. Application has no relevance to pure
mathematical statements, like D′ and E ′. All that is confirmed or not in
their application is whether they are the right bits of mathematics for the
job at hand. The criterion of truth for statements like D′ and E ′ is proof.
And indeed, assuming the correctness of mathematical pluralism, it is not
even truth simpliciter which is at issue here, but truth-in-a-structure.26

Let us now turn to Field. His Science without Numbers27 is an essay on
applied mathematics. The major explicit driver of Field’s project is what he
calls nominalism—perhaps better (for reasons we will come to in a moment),
anti-Platonism: the view that no abstract entities, notably mathematical
entities, exist. Field shows how an important example, Newtonian gravita-
tional theory, may be formulated quantifying over only physical entities. In
scientific practice, pure mathematics, which quantifies over abstract entities
can be (and is) used, but this is a conservative extension of the physical
machinery, and so is not involved essentially.28 We are free, then, to adopt a
fictionalist understanding of the pure mathematics. The pure mathematical
statements are not really true. They are just “true in the fiction” which is,
say, R.

Field’s view has some notable similarities and notable differences with
the view described above. To start with, I agree with Field’s anti-Platonism.
However, I prefer a noneist approach to the matter. By all means, quantify
over abstract entities. These are just non-existent objects.29

Next, according to the two accounts of applied mathematics, the world
(or an aspect of it) is described in empirical terms. We then interpret some
of what is going on in pure mathematical terms, and use the results of this to
infer an empirical situation. There are three important differences between
our approaches.

First, in my case, though not in Field’s, the empirical statements refer
to mathematical objects, such as numbers. However, I stress, and as I have
already noted, these statements may be empirically verifiable by means of
familiar measuring devices. (Nor do I regard the truth of such statements as

26On the difference between the two, see Priest (2021).
27Field (1980).
28In the way that non-finitary statements are used, according to Hilbert, in arithmetic.

See Zach (2019).
29See Priest (2005), ch. 7.
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committing to the existence of abstract entities, for reasons I have already
noted.30)

Secondly, as the introduction to the second edition of Field’s book makes
clear (see esp. p. P-4 ff.) there is a second thought which drives his ap-
proach. Descriptions at the empirical level should make use only of intrinsic
notions. How, exactly to understand the notion of intrinsicality here is not a
straightforward matter. But certainly the use of measuring scales and coor-
dinate systems are not intrinsic. As is clear, my empirical level makes use of
such notions. Now, I can understand the pull of intrinsicality from a certain
theoretical perspective; but I think it fair to say that it is of virtually no
importance for practicing (applied) mathematicians. If, in the end, science
makes essential use of things such as measuring scales,31 and this introduces
an ineliminable conventionality into actual science, so be it.32

Third, it is important for Field that the application of the pure mathe-
matics is conservative over the empirical level.33 Conservativity plays no role
in my account. Indeed, it is important that the result is not conservative. It
is precisely this fact with allows for novel empirical predications, which can
be used to test the machinery deployed. However, as just observed, Field
and I understand different things by the empirical level.

Of course, making novel predications does play an important role in sci-
ence, and Field is well aware of this. He is happy with the fact that in
practice mathematical machinery is used to make novel predications. In
principle, however, these could be obtained simply from the empirical base,
from which the appropriate mathematics may be thought of as abstracted
via the appropriate representation theorem. His approach is therefore a sort
of “rational reconstruction”, which mine is not.

Finally, Field’s fictionalism and my version of mathematical pluralism
are not exactly the same; but there are, at the very least, strong similarities
between the prefixes ‘In the fiction F it is the case that’ and ‘In the structure

30In the examples of §4, the empirical languages contained terms that refer to mathe-
matical objects, though not quantification over them, e.g., with things such as ∃r r = µ(I).
The procedure I sketched carries over straightforwardly to such a syntax. The quantifiers
are simply preserved in the abstracted pure mathematical statements (and back).

31So that they cannot be “factored out” with invariance under the appropriate trans-
formations.

32See the discussion of conventionalism in Tal (2020).
33One has to be a bit careful as to how to spell this out, though. See the discussion of

conservativity in §0.4 of the second edition of the book.
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S it is the case that’. Both are closed under some kind of logic, both are
non-veridical (that is, for both operators, Θ, ΘA does not imply A); and in
neither case does the truth of ΘA entail the existence of the objects referred
to in A—though perhaps for different reasons. Indeed, one may hold that a
mathematical structure, characterised in a certain way, may not even have
its characterising properties at the actual world, but at some other worlds.34

The connection between the operator ‘In fiction F ’ and world semantics is
well known.35

Finally, let us turn to Wigner’s essay ‘The Unreasonable Effectiveness
of Mathematics in the Natural Sciences’.36 As the title suggests, in this
paper Wigner avers that we have no right to expect that mathematics can
be effective in our engagement with the world. In a sense he’s right; in a
sense, he’s wrong.

First, there is absolutely no a priori reason why the world should be
ordered or have structure. It is entirely logically possible that the world
should be as random as can be. And if it were, no mathematics would help
to explain or predict events.

But of course, the world is not like this. We know that it has order—at
least, pockets of it—because we are part of it, and we are ordered beings,
as is our immediate environment. There is, then, structure in the world.
Mathematics is a science of structure (or structures); hence we can expect
mathematics to get some grip on a least some aspects of the world.

Of course, there is no a priori reason why any particular mathematical
structure should get a grip on it. But it is hardly surprising that some of
the mathematics we have does so, since it evolved out of relevant practices,
or was developed specifically for that purpose. That it does so is, then, no
more surprising than that a telescope allows us to see at a distance, or that
the ’flu vaccine protects against ’flu.

Naturally, it may turn out that the mathematics we have developed is the
wrong mathematics for the project. As we know, it has been so sometimes
in the past; and maybe it will be so again in the future. But if that turns out
the be the case, people (or maybe, now, computers!) will at least attempt to
design mathematics that works better.

Such development is certainly not the point of pure mathematics, which

34Priest (2005), 7.8.
35See, e.g., Kroon and Voltolini (2019), §2.
36Wigner (1960).
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is to investigate interesting abstract structures in their own right. But de-
signing pure mathematical structures for intended applications is obviously
a legitimate project as well.

8 Conclusion

The main point of the paper was to address the question ‘What exactly is
applied mathematics?’. That is, ‘what goes on when a piece of pure math-
ematics is applied to an empirical realm?’. The answer I have given is as
follows. Given statements about some empirical situation, statements con-
cerning a pure mathematical structure are abstracted. We can then use what
we know about that structure to establish other pure mathematical claims,
which are then “de-abstracted” to deliver statements about the empirical sit-
uation. Which pure mathematical structure should be used is an a posteriori
and fallible matter.

I’m sure that there is much more to be said about the philosophy of
applied mathematics. This paper is no more than an attempt to spell out a
basic—and I hope correct—understanding of the topic, as a distinctive part
of the philosophy of mathematics. If it serves to put that topic on the agenda
for further reflection, the paper will have served it purpose.37
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[17] Montévil, M. (2018), ‘A Primer on Mathematical Modeling in the Study
of Organisms and their Parts’, pp. 41–55 of M. Bizzarri (ed.), Concep-
tual and Methodological Challenges in Systems Biology, New York, NY:
Humana Press.

[18] Mortensen, C. (2017), ‘Inconsistent Mathematics’, in
E. Zalta (ed.), Stanford Encyclopedia of Philosophy,
https://plato.stanford.edu/entries/mathematics-inconsistent/.

[19] Pérez-Escobar, J. A. (2020), ‘Mathematical Modeling and Teleology in
Biology’, pp. 69–82 of M. Zack and D. Schlimm (eds.), Research in
History and Philosophy of Mathematics, New York, NY: Springer.

[20] Pincock, C. (2004), ‘A New Perspective on the Problem of Applying
Mathematics’, Philosophia Mathematica 12: 135–61.

[21] Priest, G. (1997), ‘Inconsistent Models of Arithmetic, I: Finite Models’,
Journal of Philosophical Logic 26: 1519–1525.

[22] Priest, G. (2000), ‘Inconsistent Models of Arithmetic, II: the General
Case’, Journal of Symbolic Logic 65: 223–235.

[23] Priest, G. (2003), ‘On Alternative Geometries, Arithmetics, and Logics:
a Tribute to  Lukasiewicz’, Studia Logica 74: 441–468.

[24] Priest, G. (2005), Towards Non-Being, Oxford: Oxford University Press;
2nd edn, 2016.

[25] Priest, G. (2010), ‘Quine: Naturalism Unravelled’, pp. 19–30 of M. Du-
mitru and C. Stoenescu (eds.), Cuvinte, Teorii si Lucruri: Quine in
Perspectiva, Bucharest: Editura Pelican.

[26] Priest, G. (2013), ‘Mathematical Pluralism’, Logic Journal of IGPL 21:
4–14.

[27] Priest, G. (2019), ‘From the Foundations of Mathematics to Mathemat-
ical Pluralism’, pp. 363–380 of S. Centrone, D. Kant, and D. Sarikaya
(eds.), Reflections on the Foundations of Mathematics: Univalent Foun-
dations, Set Theory and General Thoughts, New York, NY: Springer.

20



[28] Priest, G. (2021), ‘A Note on Mathematical Pluralism and Logical Plu-
ralism’, Synthese 198: 4937–4946.

[29] Quine, W. (1951), ‘Two Dogmas of Empiricism’, Philosophical Review,
60: 20–43; reprinted as pp. 20–46 of From a Logical Point of View,
Cambridge, MA: Harvard University Press, 1953 (revised edition 1980).

[30] Tal, E. (2020), ‘Measurement in Science’, in E.
Zalta (ed.), Stanford Encyclopedia of Philosophy,
https://plato.stanford.edu/entries/measurement-science/.

[31] Shapiro, S. (2014), Varieties of Logic, Oxford: Oxford University Press.

[32] Singh, S. (1997), Fermat’s Last Theorem: the Epic Quest to Solve the
World’s Greatest Mathematical Problem, New York, NY: Harper Collins.

[33] Wigner, E. (1960), ‘The Unreasonable Effectiveness of Mathematics in
the Natural Sciences’, Communications on Pure and Applied Mathemat-
ics 13: 1–14.

[34] Zach, R. (2019), ‘Hilbert’s Program’, in E. Zalta (ed.), Stanford
Encyclopedia of Philosophy, https://plato.stanford.edu/entries/hilbert-
program/.

21


