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The technique of self-reference is one that is very familiar to logicians. How
to characterise it precisely, is not a simple question, but essentially it is when
one takes some procedure and uses it, itself, as its own input.

The technique is something of the Jekyll and Hyde of logic. It is deployed
to prove some of the most profound results in mathematical logic, such as
Gödel’s incompleteness theorems and Turing’s halting theorem. However it
is also deployed to prove paradoxical contradictions, such as the Liar paradox
and Russell’s paradox. Moreover, results of these two kinds are as intimately
related as Jekyll and Hyde themselves. The difference between the profound
results and paradox is often razor-thin.

One place in which this is the case concerns Löb’s theorem and Curry’s
paradox. This pair is perhaps not very familiar to people who are not math-
ematical logicians. The point of this note is to make it more so, and ponder
the significance.

A word on notation for non-logicians:

• ¬A means: it is not the case that A

• A ∨B means: A or B

• A→ B means: if A then B

• A↔ B means: A if and only if B

• X ` A means: A follows from the premises in X
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1 Löb’s Theorem: Background

Löb’s theorem was proved in 1955 by the German mathematician Martin
Löb.1 The context of the theorem was Gödel’s proof of his incompleteness
theorems—we now know others as well—and their wake. The theorems con-
cern axiomatic theories of arithmetic, that is theories which concern the nat-
ural numbers (0, 1, 2, ...). Gödel showed how the symbols, statements, and
proofs of such a theory can be coded as natural numbers. In an era when we
are very familiar with the fact that computer programs—which, like proofs,
are just sequences of statements of a formal language—can be stored as a
binary number (sequence of 0s and 1s) in a computer’s memory, this is not
now an unfamiliar fact.

This coding allowed statements about formulas and proofs themselves to
be expressed as purely number-theoretic statements. What Gödel showed
next was that if an axiom system, T , is sufficiently strong (technically, that
it can represent all primitive recursive functions), then there is a formula of
arithmetic, Prov(x, y) such that if π is a proof of A, T ` Prov(〈π〉 , 〈A〉),
and if it is not, T ` ¬Prov(〈π〉 , 〈A〉). Here, 〈π〉 is the numeral of the code
number of π, and 〈A〉 is the numeral of the code of A. That A is provable in
T can then be expressed by the sentence ∃xProv(x,〈A〉). Let us write this
as P(〈A〉)—or just P 〈A〉: I will omit double brackets to avoid clutter.

Third, and this is the really cunning part, Gödel showed that there was
a formula, G, such that T ` G ↔ ¬P 〈G〉. Effectively, G says: ‘G’ is not
provable. So we have self-reference.

Finally, Gödel showed that if T proves G, that is, T ` G, then T is
inconsistent. So if T is consistent, G cannot be proved. At this point, it is
not hard to show that if T is consistent, and so G is not provable, G is true.
(When I talk of truth here and in what follows, I mean what logicians call
truth in the standard model. That is, the interpretation of the language of
arithmetic in which symbols get their standard meaning.) Hence there are
true sentences that cannot be proved.2

Gödel’s self-referential construction is quite general, and can be used to
show that for any formula, C(x), there is a sentence, A, such that T ` A↔

1Löb (1955). For a modern treatment of the proof, see Boolos, Burgess, and Jeffrey
(2007), ch. 8.

2For a more detailed discussion of the whole matter, see Priest (2017), chs. 14, 15. For
a more technical presentation, see Boolos, Burgess, and Jeffrey (2007), chs. 15–18. See
also Berlinski (2019).
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C 〈A〉. Hence arises the question, proposed by the US logician Leon Henkin,
of the provability or otherwise of the sentence which says of itself that it
is provable—that is, a sentence, H, such that T ` H ↔ P 〈H〉. It was to
answer Henkin’s question that Löb proved his theorem, which is as follows:

• For any sentence A, if T ` P 〈A〉 → A then T ` A

This is a surprising result. After all, if the axioms of the arithmetic are
sound, anything provable is true, so every instance of P 〈A〉 → A is true.
But Löb’s theorem shows that you can prove it only for those instances for
which you can prove A itself.

Anyway, given the theorem, a solution to Henkin’s problem follows. Since
T ` P 〈H〉 → H, T ` H.

2 Löb’s Proof

Against this background, let us now look at Löb’s proof. This uses three
additional statements concerning P . Again, if T is sufficiently strong, these
can be proved, as was already clear to Gödel. These are:

[1] If T ` A then T ` P 〈A〉

Roughly: if you can prove A, you can prove that you can prove it.

[2] T ` P 〈A→ B〉 → (P 〈A〉 → P 〈B〉)

Roughly: if you can prove A→ B and A then you can prove B.

[3] T ` P 〈A〉 → P 〈P 〈A〉〉

Roughly: you can prove that if A is provable then it is provable that it is
provable.

Löb’s proof can be put it a few different ways, but they all come to much
the same thing. One way of putting it goes as follows. The proof uses a
few assumptions about the underlying logic of T . I will note these as we go
along. Modus ponens is the inference {A,A → B} ` B. Contraction is the
{A→ (A→ B)} ` A→ B.

Suppose that T ` P 〈A〉 → A. By Gödel’s self-referential construction,
we can find a sentence, L, such that:

• T ` L↔ (P 〈L〉 → A)
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(Take C(x) to be P(x)→ A.) So:

• T ` L→ (P 〈L〉 → A)

By [1]:

• T ` P 〈L→ (P 〈L〉 → A)〉

and so by [2] and modus ponens :

• T ` P 〈L〉 → P 〈(P 〈L〉 → A)〉

Hence by [2] again and the transitivity of →:

• T ` P 〈L〉 → (P 〈(P 〈L〉)〉 → P 〈A〉)

But {B → (C → D)} ` C → (B → D). Hence:

• T ` P 〈P 〈L〉〉 → (P 〈L〉 → P 〈A〉)

So by [3] and the transitivity of → it follows that:

• T ` P 〈L〉 → (P 〈L〉 → P 〈A〉)

By Contraction:

• T ` P 〈L〉 → P 〈A〉

and by our supposition about A and transitivity again:

• T ` P 〈L〉 → A

By the original characterisation of L:

• T ` (P 〈L〉 → A)→ L

So by modus ponens :

• T ` L

By [1] again:

• T ` P 〈L〉

So by a final application of modus ponens :

• T ` A

as required.
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3 Curry’s Paradox

Curry’s paradox was published in 1942 by the US logician Haskell Curry3—though
paradoxes in the same family were known to some medieval logicians.4 It can
be formulated using the notions of set, property, or truth. Here, let me give
the version that uses truth. Like the Liar paradox, it appeals to the ap-
parently obvious principle that a sentence is true just if things are the way
it says. (Logicians, following Tarski, often call this the T -Schema.) So, for
any sentence, A (provided that it does not use context-dependent words, like
‘you’ and ‘now’):

• T 〈A〉 ↔ A

Here, T x is the predicate ‘x is true’, and 〈A〉 is a name for A. (It need not
be obtained by arithmetic coding, but it could be.)

The Liar paradox concerns the sentence, S, such that S ↔ ¬T 〈S〉; that
is, which says of itself that it is not true, and deduces both S and ¬S. If
one appeals to the principle of Explosion (or to give it its medieval name,
ex contradictione quodlibet sequitur) ({B,¬B} ` A, for arbitrary A and
B), then an arbitrary conclusion follows. Curry’s paradox establishes an
arbitrary conclusion A, but without explicit mention of negation or the use
of Explosion. Again, it can be formulated in a number of different ways,
though these all come to much the same thing. Here is one standard way.

Given A, we form the sentence which says of itself that if it is true then
A. In other words, by some form of self-reference, we form a sentence, C, of
the form T 〈C〉 → A. The T -Schema for C then gives us:

• T 〈C〉 ↔ (T 〈C〉 → A)

and so:

• T 〈C〉 → (T 〈C〉 → A)

By Contraction, we get:

• T 〈C〉 → A

From the T -Schema for C in the other direction, we get:

3Curry (1942). For a general discussion of the paradox, see Shapiro and Beal (2018).
4See, e.g., Priest and Routley (1982).
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• (T 〈C〉 → A)→ T 〈C〉

So by modus ponens :

• T 〈C〉

And by modus ponens again:

• A

Since A may be obviously absurd (e.g., ‘Donald Trump is a frog’), this cannot
be the case—and even if it is true (e.g., ‘Donald Trump is corrupt’), one ought
not to be able to prove it like this.

4 And So?

It is not hard to see that structurally the same thing is going on in the proof
of Löb’s theorem and Curry’s paradox. (At least where the conditional used
in Curry’s paradox is that same as that in the formal arithmetic. Arguably,
there are different kinds of conditionals; and each will generate its own Curry
paradox.) Let us write Q for either P or T . Then by self-reference we form
a sentence, S, of the form Q〈S〉 → A. Using the properties of Q, we then
show that Q〈S〉 → (Q〈S〉 → A), and so by Contraction, Q〈S〉 → A. A
couple of applications of modus ponens then deliver A. However, in one
case the reasoning delivers a theorem. In the other it delivers something
unacceptable. What is going on here?

The standard story is something like this. The proof of Löb’s theorem is
fine. The result is perhaps surprising; but then many mathematical results
are such. The proof of Curry’s paradox is fallacious. That, at least, is
impossible to gainsay. The Liar paradox delivers a contradiction. If one is a
dialetheist one can simply accept the argument and its conclusion. The use
of paraconsistent logic, not validating Explosion, prevents the contradiction
spreading where it should not go.5 With Curry’s paradox it is impossible
to accept the argument: we have a direct proof of everything. Given that
all the logical moves in the paradoxical argument are in the proof of Löb’s
theorem, and so correct, the only other possibility is that the T -Schema must
be rejected in full generality. This view about truth is buttressed by appeal to

5See, e.g., Priest (2006).
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a construction of Tarski, according to which there is hierarchy of languages.
There is a T -Schema at every level of the hierarchy (except the first), but
the Schema at any level is guaranteed to hold only for sentences of the level
below. (Of late, it is worth nothing, logicians have been more sympathetic
to the view that the T -Schema is correct. Various logical principles are
problematised instead.6)

Anyway, given this, the T -Schema (for all A : T 〈A〉 ↔ A) is not a
property of truth. It holds only for a certain class of As. (It is well known
that there are consistent theories of arithmetic plus a truth predicate where
the Schema holds for certain syntactically defined classes of sentences.7) In
the same way, the provability of what we might call the Löb Schema (for all
A: P 〈A〉 → A) is not a property of provability. It holds only for a certain
class of As, namely, those that are themselves provable.

This analysis is problematic, however. The analogy between T and P is
not as straightforward as it might appear. Those who hold the view con-
cerning truth in question hold that not all instances of the T -Schema are
true. By contrast, all instances of the Löb Schema are true. They are just
not provable. In one sense, this is just a version of Gödel’s incompleteness
theorem; but matters are more significant than that.

As is clear to anyone familiar with Gödel’s proof, the heuristic it uses is a
paradox for provability analogous to the Liar paradox for truth. Specifically,
let G be a sentence of the form ¬P 〈G〉. Since P 〈G〉 → G, P 〈G〉 → ¬P 〈G〉.
Hence ¬P 〈G〉, that is, G; and we have just proved this, i.e., P 〈G〉. So
we have a paradox. Clearly, this uses the Löb Schema, and in particular, its
instance for G, at the first step. If this is not provable in a formal arithmetic,
then this argument cannot be reproduced in the formal system to show that
it is inconsistent. What is left of the argument just shows that the arithmetic
is incomplete.

However, the instances of the Löb Schema are true; indeed, since ‘prove’
means something like ‘establish’, they would seem to be true by the very
meaning of ‘prove’. And since the aim of an axiom system is to capture the
truths of some subject, one should expect to be able to have an axiom system
for arithmetic in which they are provable. If this system is not to be trivial
(i.e., such that everything is provable) the proof of Löb’s theorem must fail.
Given the structural parallel between the proof of Löb’s theorem and that of

6See, e.g., Kripke (1975), Priest (1987), Field (2008), Beall (2009).
7See, e.g., Boolos, Burgess, and Jeffrey (2007), p. 287, 23.1.
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Curry’s paradox, it would seem that same thing must account for the failure
of the argument there; and this gives us only two suspects: the principles of
modus ponens and Contraction (for the conditional involved).

The more dubious of the two would appear to be Contraction. There has
been little investigation of arithmetics based on logics in which Contraction
fails—so far. But given what we know about proofs in formal arithmetic,
there is a definite suspicion that many of the standard number-theoretic
results would not be provable in such theories.

Though initially less promising, the failure of modus ponens is actually
more so. In paraconsistent logics Explosion fails. That is, there can be
situations where for some A and B, B and ¬B hold, but A does not. But
then the Disjunctive Syllogism, {B,¬B ∨ A} ` A, also fails. (¬B ∨ A holds
since its first disjunct does.) In standard mathematics A→ B is understood
as ¬B ∨ A. In other words modus ponens fails.

Moreover, we know that there are axiomatic theories of arithmetic, T ,
whose underlying logic is paraconsistent, in which everything true (in the
standard model of arithmetic) is provable.8 So, in particular, T is complete;
that is, for any A, either T ` A or T ` ¬A. The theories are inconsistent, but
contradictions do not spread everywhere because of the failure of Explosion.
(Gödel’s first incompleteness theorem shows that every appropriately strong
theory of arithmetic is either incomplete or inconsistent. The second disjunct
is usually ignored since it is assumed that the theory is based on a logic where
Explosion is valid.) Modus ponens seems such an integral part of reasoning
that it would naturally be thought to be virtually impossible without it.
What these results show is that this is not so. All arithmetic truths—and
so all the standard results of number theory—are provable in such theories
without it.

In these inconsistent arithmetics all instances of the Löb Schema, P 〈A〉 →
A are provable; so, as might be expected, are the Gödel undecidable sentence,
G—that is, ¬P 〈G〉—and its negation. The proof of Löb’s theorem fails, as it
must, since the theory is non-trivial. Whether the Henkin sentence, H—that
is P 〈H〉—is provable in these arithmetics is currently unknown. In that
sense, Henkin’s original question9 is still open.10

8For details of this and what follows, see the second edition of Priest (1987), ch. 17.
9Effectively raised in this context by Shapiro (2019).

10Many thanks go to Hartry Field for his helpful comments on an earlier draft of this
piece.
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