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This is, I think the best that can be done towards proving the
truth of ¢. .

What are conventionalists to make, however, of the appeal to the
concept of 'the standard model'?

We can make sense of talk of numbers inside our language where
it is an internal question, but as we saw, all talk of 'actual
numbers', the 'standard model' as an external question is meaningless.
Hence we may reject this proof too as fallacious. (We note in
passing that exactly the same argument is sometimes offered to prove
that if Fermat's last theorem is independent of Peano Arithmetic then
it is true.)

C) The truth is, I think, less straight forward than either of
- these p0551b111tles.

Let us suppose that we do accépt the proof of the truth of ¢
given in B). How exactly did we manage to prove it? What formal
machinery would we require to formalize the proof? (Always a good
guide to the nature of the proof.)

We would need a very weak set theoretic metalanguage for
arithmetic. In fact the whole proof can be formalized in a meta-
language based on Z (Zermelo set theory).

We see then that the argument must be done in a metalanguage,
it is impossible to do it in the system itself.

Now English and all other natural languages contain their own
metalanguage (i.e. are semantically closed) and it is precisely for
this reason that we can prove in English that ¢ is true, i.e. why ¢
is assertable in English. :

Now the fact that natural languages contain their own meta-
language has further consequences. The semantic paradoxes {(and I
think we can show the set theoretic paradoxes also) occur in English
precisely because it is semantically closed.

Any reasonably large language that contains its own metalanguage
and which can talk about its own truth, denotation, definability,
etc., will contain semantic paradoxes.

The paradoxes of a) Epimenides and b) Berry are well enough
known not to require further comment.

a) This sentence is false,

b) The least number not definable in less than nineteen syllables
is definable in eighteen syllables.

We note that the idea behind a), b) and G8del's unde01dable sentence
c) are very similar, :

¢) This sentence is not provable (- in effect!)
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The important point however is that the semantic paradoxes occur in
English for exactly the same reason that the truth of ¢ is assertable
in English, viz. English is semantically closed.

Look at it another way. We are assuming that English can be
turned into a formal axiomatic system and that the truth of its G¥del
sentence ¢ can be proved in English. Hence ¢ is assertable (i.e,
provable) in English.

Gédel's theorem states that any such system can prove its own
G8del sentence if and only if it is inconsistent. :

It follows that English is inconsistent. However, we have been
well aware of this fact for a long time: a) and b) are both examples
- of sentences which are both provable and refutable in English.

It is clear then that any language for arithmetic without
‘paradoxes will have an unprovable statement that is true (i.e.
provable in a sufficient metalanguage). Conversely any such system
that can prove all its true statements will have paradoxes. Peano
arithmetic is an example of the first sort of system. English is
an example of the second.

Now there will never be any question of mathematics actually
being done in a formal system, but we shall always wish to formalize
our mathematics since it improves our understanding of what we are
doing. '

What then is the best way to formalize natural language
mathematics?

If the formal system is to be consistent then there is no questio
of it being semantically closed. So perhaps the best we can do is
use not one formal system but a hierarchy Mz of formal systems My s
a < vy, each of which is a metalanguage for the language below it,
For example M, could be Peano Arithmetic, My4y 2 metalanguage for M/
and M, = U M, for limit ordinals A.
o<A

The system would not be properly semantically closed, but we
should be able to talk about any sentence of M, in My for a limit
ordinal A.

For small o, each M would contain true arithmetic sentences
not provable in My by Godel's theorem. But since there are only a
countable number of sentences of Mb this must cease to hold by M .
In fact we can no longer apply G&del's theorem to M, where B is “r
constructive or recursive w, , since MS is not recursively
enumerable, although each M, is for all a < 8.

We could hence regard MB as an approximation to natural
language.

Why, however, should we insist that a formalization should be
consistent? What is wrong with inconsistency?
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Now this brings us to question an assumption we have made
tacitly till now. We have assumed that our formal system must be
based on a classical or intuitionist type logic, and if such a system
is inconsistent then everything is provable in it. Hence the system
is useless. :

But English is not this sort of system however. English is
inconsistent - witness any of the paradoxes, and yet we do not assert
everything in English.

It is not, therefore, a system in which a contradiction implies
anything. Consider the following argument:

The least number not definable in less than 19 syllables is not
definable in less than 19 syllables. (Call this ¢.)

Than ¢ or It is not raining. (1)

But the least number not definable in less than 19 syllables is
definable in 18 syllables. (We have just defined it thus).

Hence Not - ¢. (2)
So by (1) and (2) It is not raining.

The above argument is classically and insuitionistically valid but
would never be accepted by anyone waiting for a bus in the rain.

We see then that English must be formalized in such a way that a
contradiction does not imply everything.

However, for this to happen one of the following rules of inference
must be invalid:

s~ 0 ¢ ~ ¥ ¢ 0: ¢~ v
$ v o~ ¥ v

and it is not at all a simple matter to say which and why, and to
formalize such a logic.

When this has been done we can have systems of limited inconsiste
(i.e. in which some but not all contradictions are provable). For
this is precisely what English is: a system of limited inconsistency
containing its own metalanguage.

Until this sort of logic has been formalized, however, we will
have to be content with a hierarchy of first order metalanguages as
the nearest consistent aspproximation we can get and accept the
consequences.

I should like to thank Sue Haack, John Bell and a number of
other people at Uldum for discussions on the above subjects.
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