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1. To Begin With

1.1 Introduction. Much has been written about Gödel’s First Incompleteness Theo-

rem. Nearly always, this is on the assumption that the logic of the theory of arithmetic

in question is classical—or at least intuitionistic—logic. Rarely is the possibility that a

paraconsistent logic is used explored. Yet the use of a paraconsistent logic puts a dis-

tinctively new spin on matters. The point of the present paper is to spell some of this

out.

I shall not assume that people are familiar with the elements of paraconsistent logic—or

at least, of the paraconsistent logic I will deploy. So before we get to paraconsistent

arithmetic, I will spell this out. We will then be in a position to bring this to bear on

Gödel’s Theorem. Mostly, what I say will be of a technical nature; but I will permit

myself a few philosophical comments towards the end.2

1.2 Gödel’s Theorem. But first, some background.

If one looks at textbook statements of Gödel’s Theorem, one will normally find some-

thing like this:

‚ Any axiomatic theory of arithmetic, with appropriate expressive capabilities, is

incomplete—in the sense that there is something true (in the standard model of

arithmetic) that cannot be proved.

This in inaccurate. What the proof of the theorem actually shows is this:

‚ Any axiomatic theory of arithmetic, with appropriate expressive capabilities, is

either incomplete—in that sense—or inconsistent.

Of course, the inconsistent possibility is usually ignored, since in classical logic inconsis-

tency implies triviality, and so this possibility is uninteresting. With a paraconsistent

logic, it is, however.

It might be thought that the proof of the Theorem depends on classical logic. It does

not. In fact, it makes virtually no assumptions about the underlying logic of the theory.

Let me show this.

The theorem can be proved for any theory, T , which satisfies the following four con-

ditions:
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2. Paraconsistent Logic

‚ [A] Gödel codes are assigned to syntactic entities, such as formulas and proofs.

If n is a number, write its numeral as n. If A is a formula with code n, write xAy

for n.

‚ [B] There is a formula with two free variables, Bpx, yq, which defines the proof

relation of T . That is:

– (i) if n is the code of a proof of A in T then Bpn, xAyq is true in the standard

model

– (ii) if n is the not code of a proof of A in T then  Bpn, xAyq is true in the

standard model

‚ [C] Define Prov y as DxBpx, yq. Then Prov is a proof predicate for T . That is:

– if T $ A then T $ Prov xAy

‚ [D] There is a formula, G, of the form  Prov xGy .3

Given these assumptions, we can now establish Gödel’s Theorem in the disjunctive

form in which I stated it.

‚ By [D], if T $ G then T $  Prov xGy.

‚ By [C], T $ G then T $ Prov xGy.

‚ Hence, if T $ G, T is inconsistent.

Suppose that T is consistent.

‚ Then T & G.

‚ That is, no number is the code of a proof of G.

‚ By [Bii], for any n,  Bpn, xGyq is true in the standard model.

‚ Hence,@x Bpx, xGyq is true in the standard model.

– As, then, is  DxBpx, xGyq.

– That is,  Prov xGy.

– That is, G.

‚ Hence, G is true in the standard model.

So if T is consistent, it is incomplete. Contrapositively, if T is complete, it is inconsistent.

Notice that virtually nothing is assumed in this argument about the logic of T .

2. Paraconsistent Logic

2.1 Semantics. Let us now turn to details concerning paraconsistent logic. The para-

consistent logic in question is LP . This may be set up in many ways. For our purposes,

the following is most the appropriate.4

The language is a standard first-order language. We take A Ą B to be defined in the

usual way, as  A_B. An interpretation for the language is a structure A “ xD, δy such

that:
3 Standard proofs of the theorem usually do not deliver quite this. What they deliver is a formula,

G, such that G ”  Prov xGy (and in a paraconsistent context, ” does not detach). However, what

follows can be modified to take account of this fact with only minor changes. In any case, there are

various ways to obtain a literal identity. My favourite is as follows. (I’m pretty sure that the idea is due

to Saul Kripke, though I forget where I first learned it.) Extend the language of arithmetic by a new

constant, k. Assign Gödel codes to this language in the usual way. Let the code of  DxProv k be k.

Now, consider an interpretation of this language which is the same as the standard interpretation, except

that the denotation of k is k. In this interpretation, k “ x DxProv ky.
4 See Priest (2006a), ch. 5, and Priest (2008), chs. 7, 21.
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2. Paraconsistent Logic

‚ D is a non-empty domain (of quantification).

‚ For every constant, c, δpcq P D.

‚ For every n-place function symbol, fn, δpfnq is a function from Dn to D.

‚ For every n-place predicate, Pn, δpPnq is a pair, xδ`pPnq, δ
´pPnqy such that:

– δ`pPnq Y δ
´pPnq “ Dn

‚ δ`p“q “ txd, dy : d P Du

Let A ,` A and A ,´ A mean that A is true and false in A, respectively. Then, given

any interpretation, A:

‚ δpfnt1...tnq “ δpfnqpδpt1q, ..., δptnqq

‚ A ,` Pnt1...tn iff xδpt1q, ..., δptnqy P δ
`pPnq

‚ A ,´ Pnt1...tn iff xδpt1q, ..., δptnqy P δ
´pPnq

‚ A ,`  A iff A ,´ A

‚ A ,´ A iff A ,` A

‚ A ,` A^B iff A ,` A and A ,` B

‚ A ,´ A^B iff A ,´ A or A ,´ B

‚ A ,` A_B iff A ,` A or A ,` B

‚ A ,´ A_B iff A ,´ A and A ,´ B

To state the truth/falsity conditions for quantified statments, we assume that the language

has been augmented with a new constant, kd, for every d P D, such that δpkdq “ d.5 We

then have:

‚ A ,` @xA iff for all d P D A ,` Axpkdq

‚ A ,´ @xA iff for some d P D A ,´ Axpkdq

‚ A ,` DxA iff for some d P D A ,` Axpkdq

‚ A ,´ DxA iff for all d P D A ,´ Axpkdq

For closed formulas, A, and sets of closed formulas, Σ:

‚ A is a model of A iff A ,` A

‚ A is a model of Σ iff A ,` A, for every A P Σ

‚ Σ |ùLP A iff every model of Σ is a model of A

Note that all of this is exactly the same as classical logic (CL), except that the semantics

of LP allow truth and falsity to overlap.

Next, some simple properties of LP . Call an interpretation classical if δ`pPnq X

δ´pPnq “ H, for every Pn. Then clearly, every classical interpretation is an LP interpre-

tation. Hence:

‚ Σ |ùLP Añ Σ |ùCL A

However:

‚ tA, Au |ùLP B

Hence:

‚ Σ |ùCL Aœ Σ |ùLP A

But:6

‚ H |ùCL A ô H |ùLP A

5 This is not essential. It is just a simple way of avoiding talk of satisfaction.
6 For the proof, see Priest (2006a), ch. 5.
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3. Inconsistent Arithmetic

2.2 Collapsed Models. We now come to an important piece of LP metatheory: the

Collapsing Lemma.

Let A be any LP interpretation (and so any classical interpretation), and let ∼ be

any equivalence relation on the domain of A, which is also a congruence relation on the

interpretations of the function symbols in the language. That is:

‚ d1 ∼ e1, ... dn ∼ en ñ δpfnqpd1, ..., dnq ∼ δpfnqpe1, ..., enq

If d P D, let rds be the equivalence class of d.

Now define the collapsed interpretation,
∼
A “

A ∼
D,

∼
δ
E

, as follows:

‚
∼
D “ trds : d P Du

‚ For every constant, c,
∼
δpcq “ rcs

‚ For every n-place function symbol, fn,
∼
δpfnqprd1s, ..., rdnsq “ rδpfnqpd1, ..., dnqs

‚ For every n-place predicate, Pn:

– xrd1s, ..., rdnsy P
∼
δ
`

pPn) iff for some e1 ∼ d1, ...,en ∼ dn xe1, ..., eny P δ
`pPn)

– xrd1s, ..., rdnsy P
∼
δ
´

pPn) iff for some e1 ∼ d1, ...,en ∼ dn, xe1, ..., eny P δ
´pPn)

It is easy to check that the collapsed interpretation is indeed an LP interpretation. In

effect, the collapse identifies all the members of an equivalence class, to deliver an object

which has all the properties of the things in it.

One may now establish the Collapsing Lemma:

If A is any LP interpretation, and
∼
A is any collapse then:

‚
∼
δptq “ rδptqs

‚ If A ,` A then
∼
A ,` A

‚ If A ,´ A then
∼
A ,´ A

In other words, when an interpretation is collapsed, truth and falsity values are preserved

(though other things may become true or false in the process). The proof of the Lemma

is by the appropriate inductions, and I omit it here.7

3. Inconsistent Arithmetic

3.1 Inconsistent Models. We can now turn to Gödel’s theorem. To do so, we need

to apply the Collapsing Lemma to establish some facts about models of inconsistent

arithmetic.8

In what follows, let the language be the standard one for first-order arithmetic (with

one constant, 0, and function symbols for successor, addition, and multiplication). Let N

be the set of sentences in this language true in the standard (classical) model of arithmetic.

Let M be any model of N.

If
∼
M is any collapsed interpretation,

∼
M is a model of N, by the Collapsing Lemma.

Let me give a couple of examples of such collapsed models.

Example 1

‚ M is any clssical non-standard model of arithmetic

7 Details can be found in Priest (2006a), p. 229 f.
8 For this, and much further discussion, see Priest (2006a), ch. 17, and the references cited therein.
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3. Inconsistent Arithmetic

‚ d ∼ e iff (d and e are standard and d “ e ) or (d and e are non-standard)

What ∼ does, in effect, is to leave all the standard numbers alone, but identify all the non-

standard numbers. It is easy to check that ∼ is an equivalence relation, and a congruence

with respect to the function symbols. We may draw the diagram of the successor relation

in the collapsed model as follows:

ñ

0 Ñ 1 Ñ 2 Ñ ... i

As is clear,
∼
M |ù Dx x “ x1, but

∼
M |ù 0 “ 01. Hence,

∼
M is a model of N, and the set of

things true in it is inconsistent but non-trival (i.e., not the set of all formulas).

Example 2

‚ M is the standard model of arithmetic

‚ n and p are a natural numbers greater than 1.

‚ d ∼ e iff (d, e ă n and d “ e ) or pd, e ě n and d “ e rmod psq

This relation leaves numbers less than n alone, but numbers greater than or equal to n

behave as in arithmetic mod p. Again, is is easy to check that this is an equivalence

relation, and a congruence relation on the function symbols. We may depict the collapsed

interpretation as follows.

n` p´ 1 Ð ... Ð n` 3

Ó Ò

0 Ñ 1 Ñ ... Ñ n Ñ n` 1 Ñ n` 2

As is clear,
∼
M |ù Dx x “ x 1 ¨ ¨ ¨1 (with p occurrences of the successor function symbol),

and
∼
M |ù 0 “ 01. Hence, again,

∼
M is a model of an inconsistent but non-trivial set of

sentences that contains all the sentences true in the standard model. Moreover, in this

case,
∼
M is finite. Hence, the set of sentences true in

∼
M is decidable. (The particular

and universal quantifiers behave like finite disjunctions and conjunctions, respectively.)

Hence, it is axiomatizable.

We see, then, that there are non-trivial but inconsistent axiomatic LP theories which

contain all the truths in the standard model. There are, therefore axiomatic LP theories

which are complete but inconsistent.9 Thus, in the disjunctive statement of Gödel’s

Theorem stated in 1.2, one can no longer ignore the inconsistency disjunct.

3.2 Back to the Gödel Sentence. Let us now turn to look at the behaviour of the

“Gödel sentence” in these inconsistent theories.

Let T be any axiomatic arithmetic such that T Ě N. Let Prov x be the arithmetic

predicate which defines T in the standard model. That is:

‚ If T $ A then Prov xAy P N, so T $ Prov xAy

‚ If T & A then  Prov xAy P N, so T $  Prov xAy

9 I note that in the case of Example 2, the model is finite. But this is unnecessary. There are infinite

models of the same kind, i.e., whose theories are axiomatic. This is proved in Paris and Sirokofskich

(2008).
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3. Inconsistent Arithmetic

Let G be  Prov xGy. Then either T $ G or T & G. In either case, T $  Prov xGy.

So T $ G, and T $ Prov xGy). That is, the Gödel sentence and its negation are both

provable—as opposed to the consistent case, where neither is provable.10

3.3 Some Philosophical Issues. So much for purely technical matters. Let me now

make a few philosophical observations.

Behind Gödel’s proof of the Incompleteness Theorem—and of course, there are oth-

ers—there is a recognisable paradox concerning the sentence ‘this sentence is not provable’,

which is clearly in the same family as the Liar. We may call this Gödel’s Paradox, and it

goes as follows. Let G be  Prov xAy.

‚ Suppose that Prov xGy

‚ Then G (what is provable is true)

‚ That is,  Prov xGy

‚ Hence,  Prov xGy (is proved)

‚ That is, G

‚ So Prov xGy (we have just proved it)

Now, of course, this argument cannot be formalised in the arithmetic if it is consistent:

the second line cannot be enforced, however natural it is. However, in a dialetheic solution

to the Liar Paradox, the thought is that there is nothing wrong with the reasoning which

produces contradiction. It is just fine, and we should accept the contradiction it delivers

(though the use of a paraconsistent logic prevents an arbitrary conclusion following). If

this is correct then, it would seem, we should accept the same conclusion in the case of

the Gödel’s Paradox. The inconsistent arithmetic, then, gets things exactly right.

If one asks why one cannot push through the paradoxical argument in the case of

consistent arithmetics, the answer is that Löb’s Theorem gets in the way. For the theorem

tells us that, for any A, if $ Prov xAy Ą A then $ A. Hence, we cannot infer A from

Prov xAy, for arbitrary A.

Now, in truth, there is already something strange about Löb’s Theorem. Given that

the axiom system is sound, of course one ought to be able to infer A from the fact that A

is proved. Indeed, for any A, Prov xAy Ą A is true in the standard model!11 Intuitively,

one should expect all the Löb sentences to hold in the correct arithmetic. And they do

in the inconsistent arithmetics. To see this, note that for any A, either T $ A or T & A.

In the first case, obviously T $ Prov xAy Ą A. In the second case, T $  Prov xAy, so

T $ Prov xAy Ą A.

10 It might be wondered what happens to Gödel’s Second Theorem in this context. This theorem

states that given a consistent axiomatic arithmetic of the kind we are dealing with, the canonical statement

of its consistency cannot be proved in the theory. In the case of inconsistent arithmetics, since they are

inconsistent, one would not be expect the theory to be able to prove its consistency. However, if the

theory is non-trivial, one might hope that the theory can prove its own non-triviality. Indeed in the case

of the inconsistent axiomatic arithmetics we are considering, it can. For take some unprovable sentence,

A. Then since T & A,  Prov xAy P N, and so T $  Prov xAy. (Warning: in some theories, we might

be able to prove Prov xAy as well. See, further, Priest (2006a), 17.4.)
11 In case anyone is puzzled by this technically, note that one can add all instances of the Löb sentence

to obtain a consistent theory. The cost is that Prov no longer represents provability in this new system.
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5. Conclusion

4. Objections

Let me end with a brief mention of a few philosophical objections one might be tempted

to make at this point.

Perhaps the first thought would be that one cannot prove enough in the inconsis-

tent arithmetics. After all, modus ponens for Ą is not valid. That thought can be set

aside quickly, though. Everything true in the standard model is provable in the theory:

everything one could want.

But the next obvious thought is that one can prove too much. True, we have everything

true in the standard model; but we have some of their negations too. Why, however,

should such contradictions be a problem? One reason one might give is that, by the

Principle of Non-Contradiction, contradictions are not true, so one should not want them

to be provable. Clearly, the objection turns on the correctness of the Principle of Non-

Contradiction, and so now the debate must turn to the question of what reason one has

for supposing this to be true. This is not the place to go into the matter. Let me just

say that arguments for the unrestricted validity of the Principle are exceptionally hard to

find.12

The next thought is a more subtle one. We apply arithmetic in science for many

purposes. Contradictions in arithmetic would ruin these applications. This does not

follow, however. Thus, suppose that the inconsistent arithmetic is given as in Example 2.

Then all the equations for numbers less n behave consistently.13 So any sentence where

the quantifiers are bounded by a number less than n also behave consistently. Now, for

practical purposes, we are rarely concerned with really large numbers. Thus suppose that

there is an inconsistent natural number, and so a least, m ` 1. Suppose that this is so

large that it has no empirical meaning. (Maybe m is Apn, nq, where A is the Ackermann

function, and n is the number of elementary particles in the cosmos.) Any sentence

with quantifiers bounded by m is consistent. So the contradictions have no practical

implications.14

5. Conclusion

Whatever one makes of these matters, it is clear that applying a paraconsistent logic to

arithmetic opens up a whole new dimension on matters concerning Gödel’s Incompleteness

Theorem. Indeed, allowing for the possibility of inconsistency-tolerant theories, does this

in many areas. But Gödel’s Theorem is undoubtedly one of the most profound pieces of

mathematics in the last 100 years. The new dimensions concerning this are, then, equally

profound.

12 For just the start of the debate, see Priest (1989). See also the essays in Priest (200b).
13 And of course, in Example 1, all the natural numbers behave consistently.
14 For some further discussion, see Priest (1994).
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