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1 Introduction

I suppose that an appropriate way to write an essay on the foundations of
mathematics would be to start with a definition of the term, and then discuss
the various theoretical enterprises that fall within its scope. However, I’m
not sure that the term can be caught in a very illuminating definition. So
I’m not going to do this.

What I want to do instead is to tell a story of how foundational studies
developed in the last 150 years or so. I am not attempting to give an author-
itative history of the area, however. To do justice to that enterprise would
require a book (or two or three). What I want to do is put the development
of the subject in a certain perspective—a perspective which shows how this
development has now brought us to something of a rather different kind:
mathematical pluralism. And what that is, I’ll explain when we get there.

For the most part, what I have to say is well known. Where this is so,
I shall just give some standard reference to the material at the end of each
section.1 When, towards the end of the essay, we move to material that is
not so standard, I will give fuller references.

So, let me wind the clock back, and start to tell the story.

1A good general reference for the standard material is Hatcher (1982).
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2 A Century of Mathematical Rigor

The 19th Century may be fairly thought of as, in a certain sense, the age of
mathematical rigour. At the start of the century, many species in the genus
of number were well known: natural numbers, rational numbers, real num-
bers, negative numbers, complex numbers, infinitesimals; but many aspects
of them and their behaviour were not well understood. Equations could have
imaginary roots; but what exactly is an imaginary number? Infinitesimals
were essential to the computation of integrals and derivatives; but what were
these ‘ghosts of departed quantities’, as Berkeley had put it?2 The century
was to clear up much of the obscurity.

Early in the century, the notion of a limit appeared in Cauchy’s formula-
tion of the calculus. Instead of considering what happens to a function when
some infinitesimal change is made to an argument, one considers what hap-
pens when one makes a small finite change, and then sees what happens “in
the limit”, as that number approaches 0 (the limit being a number which may
be approached as closely as one pleases, though never, perhaps, attained).
Despite the fact that Cauchy possessed the notion of a limit, he mixed both
infinitesimal and limit terminology. It was left to Weierstrass, later in the
century, to replace all appeals to infinitesimals by appeals to limits. At this
point, infinitesimals disappeared from the numerical menagerie.

Weierstrass also gave the first modern account of negative numbers, defin-
ing them as signed reals, that is, pairs whose first members are reals, and
whose second members are “sign bits” (‘+’ or ‘-’), subject to suitably op-
erations. A contemporary of Weierstrass, Tannery, gave the first modern
account of rational numbers. He defined a rational number as an equivalence
class of pairs of natural numbers, 〈m,n〉, where n 6= 0, under the equivalence
relation, ∼, defined by:

〈m,n〉 ∼ 〈r, s〉 iff m · s = r · n

Earlier in the century, Gauss and Argand had shown how to think of complex
numbers of the form x + iy as points on the two dimensional Euclidean
plane—essentially as a pair of the form 〈x, y〉—with the arithmetic operations
defined in an appropriate fashion.

A rigorous analysis of real numbers was provided in different ways by
Dedekind, Weierstrass, and Cantor. Weierstrass’ analysis was in terms of

2The Analyst, or a Discourse Addressed to an Infidel Mathematician (1734), §XXXV.
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infinite decimal expansions; Cantor’s was in terms of convergent infinite se-
quences of rationals. Dedekind’s analysis was arguably the simplest. A
Dedekind section is any partition of the rational numbers into two parts,
〈L,R〉, where for any l ∈ L and r ∈ R, l < r. A real number can be thought
of as a Dedekind section (or just its left-hand part).

So this is how things stood by late in the century. Every kind of number
in extant mathematics (with the exception of infinitesimals, which had been
abolished) had been reduced to simple set-theoretic constructions out of, in
the last instance, natural numbers.

What, then of the natural numbers themselves? Dedekind gave the first
axiomatisation of these—essentially the now familiar Peano Axioms. This
certainly helped to frame the question; but it did not answer it.3

3 Frege

Which brings us to Frege. Frege was able to draw on the preceding develop-
ments, but he also defined the natural numbers in purely set-theoretic terms.
The natural number n was essentially the set of all n-membered sets (so that
0 is the set whose only member is the empty set, 1 is the set of all singletons,
etc). This might seem unacceptably circular, but Frege showed that circu-
larity could be avoided, and indeed, how all the properties of numbers (as
given by the Dedekind axioms) could be shown to follow from the appropriate
definitions.

But ‘follow from’ how? The extant canons of logic—essentially a form
of syllogistic—were not up to the job, as was pretty clear. Frege, then, had
to develop a whole new canon of logic, his Begriffsschrift. Thus did Frege’s
work give birth to “classical logic”.

Given Frege’s constructions, all of the familiar numbers and their prop-
erties could now be shown to be sets of certain kinds. But what of sets
themselves? Frege took these to be abstract (non-physical) objects satisfy-
ing what we would now think of as an unrestricted comprehension schema.
Thus (in modern notation), any condition, A(x), defines a set of objects
{x : A(x)}. Because he was using second-order logic, Frege was able to de-
fine membership. Again in modern notation, x ∈ y iff ∃Z(y = {z : Zz}∧Zx).

Moreover, Frege took these set-theoretic principles themselves to be prin-
ciples of pure logic. Hence all of arithmetic (that is, the theory of numbers)

3For the material in this section, see Priest (1998).
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was a matter of pure logic—a view now called logicism. And this provided
an answer to the question of how we may know the truths of arithmetic—or
to be more precise, reduced it to the question of how we know the truths of
logic. As to this, Frege assumed, in common with a well-worn tradition, that
these were simply a prior i.

Frege’s achievement was spectacular. Unfortunately, as is well known,
there was one small, but devastating, fly in the ointment, discovered by
Russell. The naive comprehension principle was inconsistent. Merely take
for A(x) the condition that x /∈ x, and we have the familiar Russell paradox.
If B is the sentence {x : x /∈ x} ∈ {x : x /∈ x} then B ∧ ¬B. Given the
properties of classical logic, everything followed. A disaster.

After the discovery of Russell’s paradox, Frege tried valiantly to rescue
his program, but unsucessfully. The next developments of the Zeitgeist were
to come from elsewhere.4

4 Russell

Namely, Russell—and his partner in logical crime, Whitehead. Russell was
also a logicist, but a more ambitious one than Frege. For him, all mathe-
matics, and not just arithmetic, was to be logic. In the first instance, this
required reducing the other traditional part of mathematics—geometry—to
logic, as well. This was relegated to Volume IV of the mammoth Principia
Mathematica, which was never published.

But by this time, things were more complex than this. The work of Cantor
on the infinite had generated some new kinds of numbers: transfinite ones.
These were of two kinds, cardinals, measuring size, and ordinals, measuring
order. Russell generalised Frege’s definition of number to all cardinals: a
cardinal number was any set containing all those sets between which there is
a one-to-one correspondence. He generalised it further again to ordinals. An
ordered set is well-ordered if every subset has a least member. An ordinal
is any set containing all those well-ordered sets between which there is an
order-isomorphism.

Of course, Russell still had to worry about his paradox, and others of a
similar kind which, by that time, had multiplied. His solution was type theory.
The precise details were complex and need not concern us here. Essentially,
sets were to be thought of as arranged in a hierarchy of types, such that

4For the material in this section, see Zalta (2016).
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quantifiers could range over one type only. Given a condition with a variable
of type i, A(xi), comprehension delivered a set {xi : A(xi)}; this set, however
was not of type i, but of a higher type, and so it could not be substituted into
the defining condition delivering Russell’s paradox to produce contradiction.

Russell’s construction faced a number of problems. For a start, it was
hard to motivate the hierarchy of orders as a priori, and so as part of logic.
Secondly, with his construction, Frege had been able to show that there were
infinite sets (such as the set of natural numbers). The restrictions of type
theory did not allow this proof. Russell therefore had to have an axiom to
the effect that there was such a thing: the Axiom of Infinity. It was hard to
see this as an a priori truth as well.5

On top of these, there were problems of a more technical nature. For a
start, the hierarchy of types meant that the numbers were not unique: every
type (at least, every type which was high enough) had its own set of numbers
of each kind. This was, to say the least, ugly. Moreover, Cantor’s work had
delivered transfinite numbers of very large kinds. Type theory delivered only
a small range of these. Specifically, if i0 = ℵ0, in+1 = 2in , and iω =

⋃
n<ω

in,

then type theory delivered only those cardinals less than iω. Of course, one
could just deny that there were cardinals greater than these, but prima facie,
they certainly seemed coherent.

Finally, to add insult to injury, one could not even explain type theory
without quantifying over all sets, and so violating type restrictions.

Russell fought gallantly against these problems—unsuccessfully.6

5 Zermelo

New developments arrived at the hands of Zermelo. He proposed simply to
axiomatize set theory. He would enunciate axioms that were strong enough
to deliver the gains of the 19th Century foundational results, but not strong
enough to run afoul of the paradoxes. His 1908 axiom system, strengthened
a little by later thinkers, notably Fraenkel, appeared to do just this. The

5Earlier versions of type theory also required a somewhat problematic axiom called
the Axiom of Reducibility. Subsequent simplifications of type theory showed how to avoid
this.

6Starting around the 1990s, there was a logicist revival of sorts, neo-logicism; but it
never deilivered the results hoped of it. For the material in this section, see Irvine (2015)
and Tennant (2017).
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axioms were something of a motley, and so all hope of logicism seemed lost;7

but, on the other hand, the system did not have the technical inadequacies
of type theory.

The key to avoiding the paradoxes of set theory was to replace the naive
comprehension schema with the Aussonderung principle. A condition, A(x)
was not guaranteed to define a set; but given any set, y, it defined the subset
of y comprising those things satisfying A(x). An immediate consequence of
this was that there could be no set of all sets—or Russell’s paradox would
reappear. Indeed, all “very large” sets of this kind had to be junked, but
with a bit of fiddling, the mathematics of the day did not seem to need these.

In particular, the Frege/Russell cardinals and ordinals were just such
large sets. So to reduce number theory to set theory, a different definition
had to be found. Zermelo himself suggested one. Later orthodoxy was to
prefer a somewhat more elegant definition proposed by von Neumann. 0 is
the empty set. α+ 1 is α∪ {α}, and given a set, X, of ordinals closed under
successors, the ordinal which is the limit of these is

⋃
X. A cardinal was an

ordinal such that there was no smaller ordinal that could be put in one-to-one
correspondence with it.

Logicism had died. The fruits of 19th Century reductionism had been
preserved. The paradoxes had been avoided. The cost was eschewing all
“large” sets; but this seemed to be a price worth paying.

The next developments came from a quite different direction.8

6 Brouwer

In the first 20 years of the 20th Century, Brouwer rejected the idea that
mathematical objects were abstract objects of a certain kind: he held them
to be mental objects. Such an object exists, then, only when there is some
mental procedure for constructing it (at least in principle). In mathematics,
then, existence is constructibility. Brouwer took his inspiration from Kant.
Mental constructions occur in time. Time, according to Kant, is a mental
faculty which enforms sensations—or intuitions, as Kant called them. Hence,

7About 20 years later later, in the work of von Neumann and Zermelo, a model of sorts
was found: the cumulative hierarchy. This did provide more coherence for the axoms,
but it did nothing to save logicism. On the contrary, it appeared to give set theory a
distinctive non-logical subject.

8For the material in this section, see Hallett (2013).
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Brouwer’s view came to be called Intuitionism. Intuitionism provides a quite
different answer from that provided by logicism as to how we know the truths
of mathematics: we know them in the way that we know the workings of our
own mind (whatever that is).

Brouwer’s metaphysical picture had immediate logical consequences. Given
some condition, A(x), we may have (at least at present) no construction of
an object which can be shown to satisfy it; moreover, we may also have no
way of showing that there is no such construction. In other words, both of
∃xA(x) and ¬∃xA(x) may fail. Hence the Law of Excluded Middle fails. Nor
is this the only standard principle of logic to fail. Suppose that we want to
show that ∃xA(x). We assume, for reductio, that ¬∃xA(x), and deduce a
contradiction. This shows that ¬¬∃xA(x); but this does not provide us with
a way of constructing an object satisfying A(x). Hence, it does now establish
that ∃xA(x). The Law of Double Negation (in one direction), then, also fails.

Brouwer did not believe in formalising logical inference: mental processes,
he thought, could not be reduced to anything so algorithmic. But a decade or
so later, intuitionist logic was formalised by Heyting and others. Unsurpris-
ingly, it turned out to be a logic considerably weaker than “classical logic”,
rejecting, as it did, Excluded Middle, Double Negation, and other related
principles.

Given the unacceptability of many classical forms of inference, Brouwer
set about reworking the mathematics of his day. All proofs which did not
meet intuitionistically acceptable standards had to be rejected. In some cases
it was possible to find a proof of the same thing which was acceptable; but in
many cases, not. Thus, for example, consider König’s Lemma: every infinite
tree with finite branching has at least one infinite branch. Such a branch
may be thought of as a function, f , from the natural numbers to nodes of
the branch, such that f(0) is the root of the tree, and for all n, f(n + 1) is
an immediate descendent of f(n). We may construct f as follows. f(0) has
an infinite number of descendants by supposition. We then run down the
branch preserving this property, thus defining an infinite branch. Suppose
that f(n) has an infinite number of descendants. Since it has only a finite
number of immediate descendants, at least one of these must have an infinite
number of descendants. Let f(n+ 1) be one of these. The problem with this
proof intuitionistically, is that we have, in general, no way of knowing which
node or nodes these are, so we have no construction which defines the next
value of the function. There is, then, no such function, since we have no way
of constructing it.
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Brouwer delivered ingenious constructions, which were intuitionistically
valid, and which could do some of the things that classically valid construc-
tions could do. Thus, in the case of König’s Lemma, he established something
called the Fan Theorem. However, it was impossible to prove everything
which had a classical proof. Intuitionistic mathematics was therefore essen-
tially revisionary. There are things which can be established classically which
have no intuitionist proof.

This may make it sound as though intuitionist mathematics is a proper
part of classical mathematics.9 This, however, is not the case. True, not
every proof that is classically valid is intuitionistically valid. But that means
that there can be things which are inconsistent from a classical point of view,
which are not so from an intuitionistic point of view. And this allows for the
possibility that one may prove intuitionistically some things that are not
valid in classical mathematics.

Take, for example, the theory of real numbers. Let U be the real numbers
between 0 and 1; and think of these as functions from natural numbers to
{1, 0}. Now consider a one-place function, F , from U to U . To construct
F , we need to have a procedure which, given an input of F , f , defines
its output, F (f). And this means that for any n, we must have a way of
defining [F (f)](n). Since this must be an effective procedure, [F (f)](n) must
be determined by some “initial segment” of f—that is, {f(i) : i ≤ m} for
some m. Hence, if f ′ agrees with f on this initial segment, [F (f)](n) and
[F (f ′)](n) must be the same. It follows that F (f) and F (f ′) can be made as
close as we please by making f and f ′ close enough. That is, all functions
of the kind in question are continuous! This is simply false in classical real
number theory: there are plenty of discontinuous functions.

Intuitionism is not, then, simply that sub-part of classical mathematics
which can be obtained by constructive means: it is sui generis.

Ingenious though it was, though, intuitionist mathematics never really
caught on in the general mathematical community. Mathematicians who did
not accept Brouwer’s philosophical leanings could see nothing wrong with the
standard mathematics. Or perhaps more accurately, mathematicians were
very much wedded to this mathematics, and so rejected Brouwer’s philo-
sophical leanings.10

9Though one might also simply consider simply the constructive part of classical math-
ematics. See Bridges (2013).

10Further on all these things, see Iemoff (2013).
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7 Hilbert

The suspicion of classical reasoning was not restricted just to intuitionists,
though. It was shared by Hilbert, who was as classical as they came. The
discovery of Russell’s paradox, and the apparently a priori principles that
lead to it, was still something of a shock to the mathematical community;
and Hilbert wanted a safeguard against things of this kind happening again.
This inaugurated what was to become known as Hilbert’s Program.

Hilbert wanted to prove that this could not happen. Of course, the proof
had to be a mathematical one; and to prove anything mathematical about
something, one has to have a precise fix on it. Hence, the first part of the
program required such a fix on mathematics, or its various parts. This would
be provided, Hilbert thought, by appropriate axiomatizations. Hilbert had
already provided an axiom system for Euclidean geometry. So the next target
for axiomatization was arithmetic. The axiomatization was to be based on
classical logic—or at least the first-order part of Frege’s logic, which Hilbert
and his school cleaned up, giving the first really contemporary account of
this.

Given the axiomatised arithmetic, this was then to be proved consistent.
Of course given that the proof of consistency was to be a mathematical one,
and the security of mathematical reasoning was exactly what was at issue
in the project, there was an immediate issue. If our mathematical tools are
themselves inconsistent, maybe they can prove their own consistency. Indeed,
given that classical logic is being employed, if arithmetic is inconsistent, it
can prove anything.

Hilbert’s solution was to insist that the reasoning involved in a consis-
tency proof be of a very simple and secure kind. He termed this finitary.
Exactly what finitary reasoning was, was never defined exactly, as far as I
am aware; but it certainly was even weaker than the constructive reasoning
of intuitionists. The danger of contradiction, it seemed to Hilbert, arose only
when the infinite reared essentially its enticing but dangerous head. Hence
the reasoning of the consistency proof had to be something like simple finite
combinatorial reasoning—most notably, symbol-manipulation.

This approach allowed a certain philosophical perspective. Take the stan-
dard language of arithmetic. Numerals are constituted by ‘0’ followed by
some number of occurrences of the successor symbol. Terms are composed
from numerals recursively by applying the symbols for addition and multi-
plication. Equations are identities between terms. The ∆0 fragment of the
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language is the closure of the equations under truth functions and bounded
quantifiers (i.e., particular or universal quantifiers bounded by some partic-
ular number). The truth value of any ∆0 statement can be determined in a
finitary way. Terms can be reduced to numerals by the recursive definitions
of addition and multiplication. Identities between numerals can be decided
by counting occurrences of the successor symbol, and then truth functions
do the rest, the bounded quantifiers being essentially finite conjunctions and
disjunctions. So, according to Hilbert, we may take the ∆0 statements to be
the truly meaningful (contentful) part of arithmetic.

But what about the other statements? Given some axiom system for
arithmetic, this will contain the finitary proofs of the true ∆0 statements,
but proofs will go well beyond this—notably, establishing statements with
unbounded quantifiers. However, since the true ∆0 statements are complete
(that is, for any such statement, either it or its negation is true), the system
is consistent iff it is a conservative extension of that fragment.11 Thus, if the
system is consistent, reasoning deploying statements not in the ∆0 fragment
can prove nothing new of this form. However, the statements might well
have an instrumental value, in that using them can produce simpler and
more expeditious proofs of ∆0 statements. Hence, thought Hilbert, the non-
∆0 sentences could be thought of as “ideal elements” of our reasoning—in
much the same way that postulating an ideal “point at infinity” can do the
same for proofs about finite points, or imaginary numbers can do the same
for proofs about real numbers.12

The demise of Hilbert’s Program is so well known that it hardly needs
detailed telling. A young Gödel showed that any axiomatization of arithmetic
of sufficient power—at least one that is consisent—must be incomplete. That
is, there will be statements, A, such that neither A nor ¬A is provable. Since
(classically) one of these must be true, there was no complete axiomatization
of arithmetic. Putting another nail in the coffin of the Program, Gödel also

11If the system is not a conservative extension it proves the negation of some true ∆0

sentence, and so the system is inconsistent. Conversely, if it is inconsistent, since it can
prove everything, it is not a conservative extension.

12In these cases, the ideal elements are not statements, but objects. Hilbert discovered
that quantifiers could be eliminated by the use of his ε-symbol. Thus, ∃xA(x) is equivalent
to A(εxA(x)). One might—though I don’t think Hilbert ever suggested this—take ε-terms
themselves to signify ideal objects. In this way non-∆0 statements might be thought of
as statements of ∆0 form, but which concern these ideal objects (as well as, possibly, real
ones).
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established that given such a system, there is a purely arithmetic statement
which can naturally be thought of as expressing its consistency. However,
this is not provable within the system—again if it is consistent. Since the
system encodes all finitary reasoning (and much more), this seemed to show
that a finitary proof of the consistency of even this incomplete system was
impossible.13

8 Category Theory

So, by mid-century, this is how things stood: apart from some rearguard ac-
tions, the great foundational programs of the first part of the 20th Century
were defunct. This, however, was not an end of the matter. New devel-
opments were to come from a quite new branch of mathematics: category
theory.

It is common in mathematics to consider classes of structures of a certain
kind: groups, topological spaces, etc. Important information about their
common structure is delivered by the morphisms (structure preserving maps)
between them. When the range of one morphism is the domain of another,
such morphisms can be composed. If we write composition as #, then the
morphism f # g is a map which, when applied to an object x , delivers the
object obtained by applying f to g(x).

Starting in the late 1940s Eilenberg and MacLane generalised this way of
looking at things, to deliver the notion of a category. The idea was taken up
and developed substantially by later mathematicians, including Grothendieck
and Lawvere.

A category is a bunch of objects, together with functions between them,
thought of as morphisms, and often termed arrows, because of the way they
are depicted diagrammatically. In fact, the objects may be dispensed with,
since each may be identified with the identity function on it (which is a
morphism). So the notion of a category may be be axiomatised with a
number of axioms concerning functional composition. A category is, then,
any model of this axiom system (in the same way that a group, e.g., is any
model of the axioms of the theory of groups). Hence, there is a category of
all groups, all topological spaces, all sets, etc. The category of a particular
kind of structures (e.g., sets) may justify further axioms concerning functional

13For the material in this section, see Zach (2013).
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composition, in the same way that a consideration of Abelian groups justifies
axioms additional to those of groups in general.

But foundationally there is now a problem. Since the consolidation of
set theory in the early part of the century, it had been assumed that all
mathematics could be formulated within set theory. One can, indeed, think
naturally of a category as a set of a certain kind. But the problem is that
categories such as those of all groups, all topological spaces, all sets—large
categories, as they are called—are of the very large kind that had been ex-
cised from set theory by Zermelo in order to avoid Russell’s paradox. It
would seem, then, that set theory cannot provide any kind of foundation for
category theory.

There are certain remedial measures one might essay. A large category is
not a set, but one can think of it as a proper class, in the sense of NBG set
theory (a weak form of second-order ZF)—proper classes being, in effect, sub-
collections of sets which are not themselves members of anything. However,
this is not generally good enough. For category theorists consider not only
particular categories, but the category of functions between them. (Given
two categories, the category of morphisms between them is called the functor
category.) This is “too big” even to be a proper class.

One solution to these problems is to deploy the “Grothendieck hierarchy”.
This is the cumulative hierarchy, with levels, Vα, for every ordinal α, together
with the assumption that there are arbitrarily large inaccessible cardinals. As
is well known, if ϑ is an inaccessible cardinal, Vϑ is a model of ZF set theory,
so all the usual set theoretic operations can be performed within it. We may
then think of the category of all sets, group, etc, as categories of objects in a
Vϑ. The categories themselves, their functor categories, etc, are not in Vϑ, but
are denizens of higher levels of the cumulative hierarchy. Category theory,
then, must be thought of as “typically ambiguous”, applying schematically
to each Vϑ.

The retrograde nature of this move is clear. The point of category theory
is to chart commonalities of structure between all structures of a certain kind.
The Grothendieck hierarchy explicitly reneges on this. One way to bring the
point home is as follows. Suppose that we are considering a category of a
certain kind, and we prove something of the form ∃!x∀yR(x, y). This might
be some sort of representational theorem. Interpreting this at each level of
the Grothendieck hierarchy, the uniqueness of the x in question is lost: all
we have is one at every level.

An honest approach to category theory would seem, then, to take it to
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be a sui generis branch of mathematics. Some have even gone so far as to
suggest that it should be taken as providing an adequate foundation for all
mathematics, including set theory. The plausibility of this is delivered by
the theory of topoi. Topoi are particularly powerful categories of a certain
kind. (The category of all sets is one of them.) They can be characterised
by adding further axioms concerning composition to the general axioms of
category theory. All the standard constructions of set theory, at least all those
which are involved in the reduction of the other normal parts of mathematics
to set theory, can they be performed in a topos.

As a foundational strategy, the weakness of this move is evident. There
are many topoi, and “standard mathematics” can be reconstructed in each
one. We are, thus, back to the theoretical reduplication which plagued type
theory.

I think it fair to say that what to make of all these matters is still sub
judice. However, we are still not at the end of our story.14

9 Paraconsistency

We have so far met two formal logics in the foregoing: classical and intu-
itionistic. In both of these, the principle of Explosion is valid: A,¬A ` B,
for all A and B. The inference might be thought of as “vacuously valid”
in these logics, since the premises can never hold in an interpretation. The
principle is clearly counter-intuitive, though. Starting around the 1960s, the
development of paraconsistent logic began, a paraconsistent logic being ex-
actly one where Explosion is not valid. Using a paraconsistent logic we may
therefore reason using inconsistent information in a perfectly sensible way.
The information does not deliver triviality—that is, not everything can be
established.

There are, in fact, many paraconsistent logics. Their key, semantically
speaking, is to stop Explosion being vacuously valid, by including in the
domain of reasoning, not only standard consistent situations, but also incon-
sistent ones. Thus, if p and q are distinct propositional parameters, there can
be a situation where p and ¬p hold, but q does not. This is not to suggest
that these inconsistent situations may be actual. We reason, after all, about
situations which are conjectural, hypothetical, etc. However, the view that

14For the material in this section, see Marquis (2014).
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some of these inconsistent situations are actual (that is, that what holds in
them is actually true), is called dialetheism.15

The possibility of employing a paraconsistent logic opens up new possi-
bilities in a number of the foundational matters which we have met.16

Thus, one of the possibilities that has been of much interest to paraconsis-
tentists is set theory—and for obvious reasons: using a paraconsistent logic
allows us to endorse the unrestricted comprehension schema. Contradictions
such as Russell’s paradox can be proved in the theory, but these are quar-
antined by the failure of Explosion. Moreover, it was proved that, with an
appropriate paraconsistent logic, naive set theory (that is, set theory with
unrestricted comprehension) is non-trivial.17

This raises the prospect of regenerating Frege’s foundational project. Of
course, having an unrestricted comprehension schema does not guarantee
that this project can be carried through. The set-theoretic principles are
strong, but the logic is much weaker than classical logic. Things other than
Explosion need to be given up. Notably, the principle of Contraction, A →
(A→ B) ` A→ B cannot be endorsed, because of Curry’s Paradox.18

It was only relatively recently that Weber was able to show that much
of Frege’s program can be carried out in such a theory.19 He showed that
virtually all of the main results of cardinal and ordinal arithmetic can be
proved in this set theory. Moreover, the theory can be used to prove the
Axiom of Choice, as well as results that go beyond ZF set theory, such as the
negation of the Continuum Hypothesis, and several large-cardinal principles.
(Of course, in the context, this does not show that one cannot prove the
negations of these as well.)

Weber’s proofs have a couple of very distinctive elements. First, they use
comprehension in a very strong form, namely:

∃x∀y(y ∈ x↔ A)

where A may contain x itself. This provides the potential for having a fixed

15On paraconsistency, see Priest, Tanaka, and Weber (2017). On dialetheism, see Priest
and Berto (2013a).

16On inconsistent mathematics in general, see Mortensen (2017).
17See Brady (1989).
18With naive comprehension we can define a set, c, such that x ∈ c ↔ (x ∈ x → ⊥).

Contraction and modus ponens then quickly deliver a proof of ⊥.
19See Weber (2010) and (2012).
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point, and so self-reference, built into the very characterisation of a set.20

Next, Weber not only accommodates inconsistencies, but makes constructive
use of them. Thus, a number of the results concerning cardinality, such as
Cantor’s Theorem, make use of sets of the form {x ∈ X : r ∈ r}, where r is
the set of all sets which are not members of themselves, and so inconsistent.

Whether Weber’s proof methods, and the various distinctions they require
one to draw, are entirely unproblematic; and whether other aspects of set-
theoretic reasonings (such as those required in model theory) can be obtained
in naive set theory, are still questions for investigation.

Another of the foundational matters we have met, and with which para-
consistency engages, is that concerning Gödel’s theorems. Gödel’s first theo-
rem is often glossed as saying that any “sufficiently strong” axiomatic theory
of arithmetic is incomplete. In fact, what it shows is that it is either in-
complete or inconsistent. Of course, if inconsistency implies triviality, it is
natural to ignore the second alternative. However, paraconsistency changes
all that, since the theory may be complete, inconsistent, but non-trivial. (I
note that there is nothing in the use of paraconsisent logic, as such, which
problematises the proof of Gödel’s theorem. The logic required of an arith-
metic theory in order for it to hold is exceptionally minimal.)

Indeed, it is now known that there are paraconsistent axiomatic theories
of arithmetic which contain all the setences true in the standard model, and
so which are complete (that is, for any sentence of the language, A, either A
or ¬A is in the theory). These theories are inconsistent, but non-trivial.21

What foundational significance this has depends, of course, on the plau-
sibility of the claim that arithmetic might be inconsistent.

Implausible as this may seem, Gödel’s theorem itself might be thought
to lead in this direction. At the heart of Gödel’s proof of his theorem, there
is a paradox. Consider the sentence ‘this sentence is not provable’. If it is
provable, it is true; so it is not provable. Hence it is not provable. But we
have just proved this; so it is.

Of course, this argument cannot be carried through in a consistent arith-
metic, such as classical Peano Arithmetic, when proof is understood as proof
in that system. This may be a matter of relief; or it may just show the
inadequacy of the system to encode perfectly natural forms of reasoning.

20Perhaps surprisingly, Brady’s proof shows this strong form of comprehension to be
non-trivial.

21See Priest (2006), ch. 17.
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Indeed, if one takes one of the axiomatic arithmetics containing all the
truths of the standard model, there will be a formula of the language Pr(x)
which represents provability in the theory in the theory itself. It is then a sim-
ple matter to construct a sentence, G, in effect of the form ¬Pr(〈G〉) (where
angle brackets indicate gödel coding), and establish that both ¬Pr(〈G〉) and
Pr(〈G〉) hold in the theory.22

What of Gödel’s second theorem? Since a paraconsistent theory of the
kind we have just been talking about is inconsistent, one should not expect
to prove consistency. But it is also non-trivial, i.e., some statements are not
provable. This can be expressed by the sentence ∃x¬Pr(x), and this sentence
can be proved in theories of the kind in question. Of course, this does not
rule out the possibility that one may be able to prove ¬∃x¬Pr(x) as well;
and in what sense the proof of non-triviality is finitary may depend on other
features of the arithmetic. To what extent these matters may be thought to
help Hilbert’s program is, then, still a moot point.23

10 Intuitionist and Paraconsistent Mathemat-

ics

We have now been rather swiftly through a story of the development of
studies in the foundations of mathematics in the last 150 years. As we have
seen, none of the foundational ideas we have looked at can claim to have met
with uncontestable success. But looking back over developments, we can see
that something else has emerged.

As we saw in Section 6, there are fields of intuitionist mathematics that
are quite different from their classical counterparts.24 Indeed, there are fields
of intuitionist mathematics that have no natural classical counterpart.

Let me give just one example of this. This is the Kock-Lawvere the-

22Additionally, one would expect that the schema Pr(〈A〉) ⊃ A would be provable in
a theory of arithmetic in which Pr(x) really did represent provability. In a consistent
theory, it is not, as Löb’s Theorem shows. However, the schema is provable in the above
theories.

23A third foundational issue opened up by paraconsistency concerns category theory.
Given that one can operate in a set theory with a universal set, it is possible to have a
category of all sets, all groups, etc., where ‘all’ means all. The implications of this for the
relationship between set theory and category theory are yet to be investigated.

24For a further account of some of these enterprises, see Dummett (2000), chs. 2, 3.
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ory of smooth infinitesimal analysis.25 To motivate this, consider how one
would compute the derivative of a function, f(x), using infinitesimals. The
derivative, f ′(x), is the slope of the function at x, given an infinitesimal dis-
placement, i; so f(x+ i)− f(x) = if ′(x). Now, as an example, take f(x) to
be x3. Then if ′(x) = (x+ i)3−x3 = 3x2i+ 3xi2 + i3. If we could divide by i,
we would have 3x2 + 3xi+ i2. Setting i to 0 delivers the result—though how,
then, did we divide by i?26 If i2 = 0, we have another route to the answer.
For then it follows that for any infinitesimal, i, if ′(x) = 3x2i. We may not
be able to divide by i, but suppose that ai = bi, for all i, implies that a = b
(this is the Principle of Microcancellation). f ′(x) = 3x2 then follows. This
is exactly how the theory of smooth infinitesimal analysis proceeds.

Call a real number, i, a nilsquare if i2 = 0. Of course, 0 itself is a
nilsquare, but it may not be the only one! We may think of the nilsquares
as infinitesimals. The theory of smooth infinitesimals takes functions to be
linear on these. Given a function, f , there is a unique r such that, for every
nilsquare, i f(x + i) − f(x) = ri. (In effect, r is the derivative of f at x.)
This is the Principle of Microaffineness.27

Microaffineness implies that 0 is not the only nilsquare. For suppose that
it is, then all we have is that f(x+ 0)− f(x) = r0, and clearly this does not
define a unique r. So:

[1] ¬∀i(i2 = 0→ i = 0)

But now, why do we need intuitionist logic? Well, one might argue that 0
is the only nilsquare, which would make a mess of things. A typical piece
of reasoning for this goes as follows. Suppose that i is a nilsquare and that
¬i = 0. Then i has an inverse, i−1, such that i · i−1 = 1. But then i2 · i−1 = i.
Since i2 = 0, it follows that i = 0. Hence, by reductio, we have shown that
¬¬i = 0. If we were allowed to apply Double Negation, we could infer that
i = 0—and so we would have a contradiction on our hands. But this move
is not legitimate in intuitionist logic. We have just:

[2] ∀i(i2 = 0→ ¬¬i = 0)

25On which, see Bell (2008).
26One answer to the conundrum is provided by non-standard analysis, an account of

infinitesimals developed in the 1960s by Robinson. This deploys non-standard (classical)
models of the theory of real numbers.

27Microcancellation follows. Take f(x) to be xa. Then, taking x to be 0, Microaffineness
implies that there is a unique r such that, for all i, ai = ri. So if ai = bi for all i, a = r = b.
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And we may hold both [1] and [2] together.
What we see, then, is that there are very distinctive fields of intuitionistic

mathematics, quite different from the fields of classical mathematics. More-
over, one does not have to think that intuitionism is philosophically correct to
recognise that these are interesting mathematical enterprises with their own
integrity. They are perfectly good parts of pure mathematics. (Whether they
have applications to areas outside of mathematics is a quite separate matter,
and irrelevant to the present point.)

A similar point can be made with respect to paraconsistent mathematics.
In Section 9 we saw that there were inconsistent mathematical theories rel-
evant to various foundational enterprises: set theory and arithmetic. There
are, however, many interesting inconsistent mathematical theories based on
paraconsistent logics, which have no immediate application to foundational
matters.28 These include theories in linear algebra, geometry, and topology.

Let me give an example of one of these. This concerns boundaries. Take
a simple topological space, say the one-dimensional real line. Divide it into
two disjoint parts, left, L, and right, R. Now consider the point of division, p.
Is p in L or R? Of course, the description under-determines an answer to the
question. But when the example is fleshed out, considerations of symmetry
might suggest that it is in both. Then, p ∈ L, and p ∈ R so p /∈ L—and
symmetrically for R. So a description of the space might be that if x < p, x
is (consistently) in L; if p < x, p is (consistently) in R; and p is both in and
not in L, and in and not in R. Given an appropriate paraconsistent logic,
the description is quite coherent.29

This might not seem particularly interesting, but the idea of inconsis-
tent boundaries has interesting applications. One of these is to describe the
geometry of “impossible pictures”.30 Consider the following picture:

28See Mortensen (1995).
29Further on inconsistent boundaries, see Cotnoir and Weber (2015).
30For more on the following, see Mortensen (2010).
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The three-dimensional content of the picture is impossible. How should one
describe it mathematically? Any mathematical characterisation will specify,
amongst other things, the orientations of the various faces. Now, consider
the left-hand face, and in particular its lighter shaded part. This is 90◦ to the
horizontal. Next, consider the top of the lower step on the right-hand side
of the picture. This is 0◦ to the horizontal. Finally, consider the boundary
between them (a vertical line on the diagram). This is on both planes. Hence
it is at both 90◦ and 0◦ to the horizontal.31 That’s a contradiction, since it
cannot be both; but that’s exactly what makes the content of the picture
impossible. Note that the characterisation of the content must deploy a
paraconsistent logic, since it should not imply, e.g., that the top of the higher
step is at 90◦ to the horizontal.

Hence, we see, again, that whatever one thinks about the truth of naive
set theory, or inconsistent arithmetic, there are perfectly good mathematical
structures based on a paraconsistent logic.

Both intuitionist logic and paraconsistent logic, then, provide perfectly
coherent and interesting areas of mathematical investigation to which classi-
cal logic can be applied only with disaster.32

31And one can set things up in such a way that this does not imply that 90 = 0.
32It seems to me that given any formal logic there could, at least in principle, be interest-

ing mathematical theories based on this. However, intuitionistic logic and paraconsistent
logic (and perhaps fuzzy logic; see Mordeson and Nair (2001)) are the only logics for which
this has so far really been shown.
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11 Mathematical Pluralism

What we have seen is that there are areas of relatively autonomous mathe-
matical research. That is, there is a plurality of areas, such that there is no
one of them to which all others can be reduced. This is mathematical plural-
ism. In truth, this pluralism was already clear in the case of category theory:
attempts to reduce it to set theory or vice versa, were always straining at
the seams. But intuitionist and paraconsistent mathematics have put the
matter beyond doubt.33 We have, in these cases, mathematical enterprises
which are completely sui generis. (Note that I am not maintaining that all
these branches of mathematics are equally deep, rich, elegant, applicable,
etc. That is a quite different matter. All I am claiming is that they are
all equally legitimate pure mathematical structures.) What to make of the
situation certainly raises interesting issues,34 but that it now obtains cannot
be gainsaid.35

33In fact, the matter is arguably the case even in classical set theory. We can investigate
set theory in which the Axiom of Choice holds, and set theory in which the Axiom of
Determinacy, which contradicts it, holds. In that case, however, a monist might claim
that we are simply doing model theory, and investigating what holds in models of certain
set-theoretic axiom systems. One might consider a similar claim in the cases mentioned
in the text: we are just doing model-theory using classical logic, albeit of models of non-
classical logics. But this suggestion seems lame. First, intuitionist real number theory and
paraconsistent set theory are not done in this way. So the suggestion gets the mathematical
phenomenology all wrong. Secondly, the insistence that the model theory be classical seems
dogmatic. Investigations could proceed with intuitionist model theory, which would give
quite different results. (Note that intuitionist model theory is well established, but there
is as yet no such thing as paraconsistent model theory.) Thirdly, it is entirely unclear how
to pursue this strategy in the case of category theory, simply because the foundational
problem with category theory was precisely that its ambit appears to outstrip the classical
models.

34Some discussion of it can be found in Priest (2013b) and Shapiro (2014). Shapiro
takes mathematical pluralism to entail logical pluralism. I am not inclined to follow him
down that path. Given a mathematical structure based on a logic, L, reasoning in accord
with L preserves truth-in-that-structures. This may not be truth simpliciter preservation.

35There are, as far as I can see, only two strategies for maintaining mathematial monism.
One is the production of some kind of ur -mathematics to which all the kinds of math-
ematics we have met can be reduced. Maybe this could be some kind of foundational
project for the 21st century; but nothing like this is even remotely on the horizon. The
other strategy is simply to deny that the non-favoured kinds of mathematics really are
mathematics. Now whether these theories are as deep, elegant, applicable, or whatever, as
the favoured mathematics, might certainly be an issue. But it seems to me that denying
that they are mathematics is the equivalent of the proverbial ostrich burying its head in
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Mathematical pluralism was certainly not an aim of work in the founda-
tions of mathematics, but it has emerged none the less. In the 18th century,
some mathematicians investigated Euclidean geometry, trying to prove that
the Parallel Postulate was deducible from the other axioms. They did this by
assuming its negation, and aiming for a contradiction, which, it turned out,
was not coming. Their aim was not to produce non-Euclidean geometries;
but by the 19th century, it became clear that this is exactly what they had
done. In a similar way, the aim of research in the foundations of mathemat-
ics was not to establish mathematical pluralism—indeed, most researchers
in the area took themselves to be mathematical monists. But that, it seems,
is what, collectively, they have done. If one were Hegel, one would surely
diagnose here a fasinating episode in the cunning of reason.36
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