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Abstract

This paper concerns two paradoxes involving propositions. The first is Rus-
sell’s paradox from Appendix B of The Principles of Mathematics, a ver-
sion of which was later given by Myhill. The second is a paradox in the
framework of possible worlds, given by Kaplan. This paper shows a num-
ber of things about these paradoxes. First, we will see that, though the
Russell/Myhill paradox and the Kaplan paradox might appear somewhat
different, they are really just variants of the same phenomenon. Though
they do this in different ways, the core of each paradox is to use the notion
of a proposition to construct a function, f , from the power set of some set
into the set itself. Next we will see how this paradox fits into the Inclosure
Schema. Finally, I will provide a model of the paradox in question, showing
its results to be non-trivial, though inconsistent.

1. Introduction

There are a number of paradoxes of self-reference which are intensional, in
that they involve propositions—intensional entities of a certain kind.1 This
paper concerns two such. Both are well known.

The first is due to Russell in Appendix B of The Principles of
Mathematics.2 It is also rehearsed by Myhill.3 The paradox concerns the
set of propositions, P. It shows how, for any subset, X, of P, to construct a
proposition, pX, in such a way that distinct subsets generate distinct propo-
sitions. But this is impossible, since there are more subsets of propositions
than propositions.
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The second paradox is due to Kaplan.4 Kaplan is working in a worlds-
framework, which takes propositions to be subsets of the set of worlds, W.5

For any proposition, that is, subset of W, X, Kaplan shows, how to identify
a world, wX, in such a way that different subsets deliver different worlds. But
this is impossible, since there are more subsets of worlds than worlds.

In this essay, I will show a number of things. First, we will see that,
though the Russell/Myhill paradox and the Kaplan paradox might appear
somewhat different, they are really just variants of the same phenomenon.
Though they do this in different ways, the core of each paradox is to use
the notion of a proposition to construct a function, f , from the power set
of some set into the set itself.6 Next we will see how this paradox fits into a
very familiar schema: the Inclosure Schema. Finally, I will provide a model
of the paradox in question, showing its results to be non-trivial, though
inconsistent.

2. Cantor’s Paradox

As is clear from what I have just said, the two versions of our paradox
are intensional variants of Cantor’s Paradox. So, to set things up, let us start
with a proof of this.

First, Cantor’s Theorem: there is no function from the powerset of a set
into the set. Proof:

Let S be any set, and ℘(S) its power-set. Suppose that there is a function,
f , from ℘(S) into S. Define a subset, R, of S, as follows:

� R = {x ∈ S : ∃Y(x = f (Y) ∧ ¬x ∈ Y))}

Since, R ⊆ S, for some w ∈ S, w = f (R). Now suppose that:

� w ∈ R

Then:

� ∃Y(w = f (Y) ∧ ¬w ∈ Y) (Set Abstraction)

Instantiating:

� w = f (C) ∧ ¬w ∈ C

But since f is into, w = f (R) and w = f (C) entail that R = C. Hence:

� ¬w ∈ R

But then:

� w = f (R) ∧ ¬w ∈ R
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So:

� ∃Y(w = f (Y) ∧ ¬w ∈ Y)

and so:

� w ∈ R (Set Abstraction)

Consequently, there is no such f .
But of course, if there is such an f , as there would appear to be if S is the

set of all sets (where f may be the identity function), we have a contradiction.
This is Cantor’s Paradox.

3. Propositional Paradoxes

Let us now see how our intentional paradoxes deploy this framework.
In the Russell/Myhill paradox, S is the set of propositions, P, and

if Y ⊆ S, then, using the notation of propositional quantification, f (Y) =
(∀p ∈ Y) p. f is into, since if X �= Y then (∀p ∈ Y) p and (∀p ∈ X) p are
distinct propositions. So f (X) �= f (Y). This is the Russell construction. In
the Myhill construction f (Y) = ∀p p ∈ Y. The result is the same.

In Kaplan’s paradox, S is the set of worlds, and propositions are sub-
sets of worlds, so P is ℘(S), the set of propositions. If Y ⊆ S then f (Y) =
εw(Extw(F) = {Y}), where F is some fixed monadic non-logical predicate of
propositions, Extw(F) is the extension of F at w, εw selects some world sat-
isfying the condition which follows it. We make the natural assumption that
for any proposition, Y, there are worlds where the extension of F is just {Y}.
f is into, since if X �= Y then εw(Extw(F) = {X}) �= εw(Extw(F) = {Y}). So
f (X) �= f (Y).

As is clear, each argument uses the machinery of propositions to con-
struct a map, f , from the power set of some set into the set itself. Details
of the construction depend on various different assumptions about proposi-
tions; but these are just means for achieving the same end—just as different
means may be used to obtain the self-reference required for the liar paradox
(descriptions, demonstratives, Gödel coding).

4. The Inclosure Scheme

Let us now see how the paradox fits the Inclosure Schema. This is a
general schema into which all the standard paradoxes of self-reference fit.7

The Schema concerns a totality, �, a monadic predicate, ψ , and a function,
δ, such that:
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� � exists and ψ(�) (Existence)
� If X ⊆ � is such that ψ(X):

— δ(X) /∈ X (Transcendence)

— δ(X) ∈ � (Closure)

Applying Transcendence and Closure to � itself, delivers the contradiction
that δ(�) ∈ � and δ(�) /∈ �. There is a special case of the Schema when ψ
is the vacuous condition, X = X, and so may be ignored. This is the Russell
Schema.

Our propositional paradox fits the Russell Schema. The argument for
this is little more than the corresponding argument to show that Cantor’s
Paradox fits the Schema.

Take � to be to range of our lower case variables (so that upper case
variables range over subsets of this). And let δ(X) be f (X′), where X′ = {x ∈
X : ∃Y(x = f (Y) ∧ ¬x ∈ Y)}.

The paradox assumes Existence (a totality of all propositions or worlds).
Closure holds, since f is a map into �. It remains to check Transcen-
dence. The argument for this is simply a version of our paradoxical ar-
gument. Suppose that X ⊆ �. Let w = δ(X) = f (X′). We then argue as
follows.

First, suppose that w ∈ X′. Then:

� ∃Y(w = f (Y) ∧ w /∈ Y)

Instantiating:

� w = f (C) ∧ w /∈ C

But since f is into, w = f (X′) and w = f (C) entails that X′ = C. Hence:

� w /∈ X′

Hence, by Excluded Middle: w /∈ X′. But then:

� w = f (X′) ∧ w /∈ X′

So:

� ∃Y(w = f (Y) ∧ w /∈ Y)

Given the definition of X′, if w ∈ X then w ∈ X′, which it is not. So w /∈ X,
as required.
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5. Properties for Sets

This is not the place to discuss possible suggestions for solving our
target paradox. Some of these are discussed in the references already cited.
But given that it is an Inclosure Paradox, and I have advocated a dialetheic
solution for such paradoxes,8 I want in what follows to investigate further
such a solution. The aim will be to find a model of the paradox which shows
that the paradoxical argument does not deliver triviality. We will do this by
a little massaging (interesting, I think, in its own right), which will come in
two stages.

First, note that the identity conditions of sets are playing no role in
the argument. We might just as well, then, take upper case variables to
range over properties, replace set abstracts with λ-terms, and set member-
ship with instantiation, η. The principle of set abstraction transforms into
λ-conversion. The paradoxical argument then becomes:

� R = λx(∃Y(x = f (Y) ∧ ¬xηY))
� w = f (R)

Suppose that:

� wηR

Then:

� ∃Y(w = f (Y) ∧ ¬wηY) (λ-conversion)

Instantiating:

� w = f (C) ∧ ¬wηC

But since w = f (R) and w = f (C) then R = C. Hence:

� ¬wηR

Also:

� w = f (R) ∧ ¬wηR

So:

� ∃Y(w = f (Y) ∧ ¬wηY)

and so:

� wηR (λ-conversion)
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6. Open Sentences for Properties

Next, the argument assumes nothing about the identity conditions for
properties either. We may therefore simply take them to be open sentences,
with at most one free variable, y. λ-terms are replaced by the names of
sentences. So if A is any such sentence, let 〈A〉 be its name. Instantiation
may then be replaced by the satisfaction relation, σ . So xσY means that x
satisfies the sentence with one free variable, Y. λ-conversion morphs into the
Satisfaction Scheme:

� tσ 〈A〉 iff Ay(t)

where t is any term, and Ay(t) is A with occurrences of y replaced by t (with
relabelling of bound variables if necessary, to avoid clashes).

Note that A may have no free variables. And if we are taking open
sentences for properties, we can take closed sentences to be propositions.
Fix some term, t. If A has no free variables, the Satisfaction Schema then
becomes:

� tσ 〈A〉 iff A

So ‘tσ ’ is a truth predicate.
Our argument now becomes the following.9

� R = 〈∃Y(v = f (Y) ∧ ¬vσY)〉
� w = f (R)

Suppose that:

� wσR
� then ∃Y(w = f (Y) ∧ ¬wσY) (Satisfaction Schema)

Instantiating:

� w = f (C) ∧ ¬wσC

Since w = f (R) and w = f (C) then R = C. Hence:

� ¬wσR

Also:

� w = f (R) ∧ ¬wσR

But then:

� ∃Y(w = f (Y) ∧ ¬wσY)
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and so:

� wσR (Satisfaction Schema)

7. A Model for the Paradoxes

We are now in a position to produce a formal model for our paradox.
We take the language to be that of first-order arithmetic, augmented by
a binary predicate, σ . Gödel coding, #, is used to deliver the names for
formulas. Lower case variable are taken to range over numbers; and upper
case variables range over (codes of) formulas with at most one free variable,
v. f (Y) is simply the code number of Y. This is obviously into.

All that remains to do is to extend this to a model of the Satisfaction
Schema. This is done by an iterative construction which delivers an appro-
priate fixed-point. I will not hammer through the details here. For truth,
rather than satisfaction, the details can be found in the Appendix of Priest
(1991), and also Priest (2002a), §8. The argument for satisfaction is com-
pletely analogous. We set the extension of σ at level α + 1 to be those pairs
〈n,#B〉 where B is a sentence with at most one free variable, and n satisfies
B at level α. At limit ordinals, we take intersections. By the usual cardinality
considerations, there is a fixed point of the construction, which verifies the
Satisfaction Schema.

The theory is non-trivial. All the purely arithmetic formulas behave
consistently. Indeed, all formulas which are grounded—in essentially the
sense of Kripke (1975)—are consistent in it.

Note also the following. We have interpreted propositions and properties
syntactically. This places constraints on their properties, and especially their
identity conditions. It might therefore be thought that this limits the signifi-
cance of the consistency results. It does not. For anything that is consistent,
given these constraints, is certainly consistent with weaker constraints—and
so for less fine-grained identity conditions.

8. Conclusion

Finally, let us look more closely at our paradox-generating formula,
∃Y(v = f (Y) ∧ ¬vσY). In the model, ‘Y’ ranges over (codes of) formulas
with at most one free variable, and f (Y), that is, Y, is that code. So our
formula becoms simply: ¬vσv, where v ranges over monadic properties or
predicates.10 To say that v does not satisfy itself is, of course, the condition
which delivers the Heterological Paradox.11 So just as Cantor’s Paradox can
seen as collapsing into Russell’s,12 the Russell/Myhill/Kaplan paradox can
be seen as collapsing into this.13
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Notes

1. For a discussion of a number of such paradoxes, see Priest (1991).
2. Russell (1903), sec. 500.
3. Myhill (1958).
4. Kaplan (1995).
5. If one wishes, one can take worlds themselves to be propositions: “maximally

consistent” propositions.
6. To remind: a function, f , is into if it maps distinct objects to distinct objects.

That is, if x �= y then f (x) �= f (y).
7. See Priest (2002a), Part 3. Perhaps the major controversy over this to date con-

cerns the question of whether Curry’s paradox does, or ought to, fit the Schema.
This is not the place to discuss that matter. Further on this matter, see §17 of
Priest (2017).

8. E.g., Priest (2002a).
9. Note that we assume here that f is a definable function. What is inside the

quotation is, strictly speaking, its definition.
10. Taking propositions or closed sentences to be degenerate cases of these.
11. See Priest (2006), 1.2.
12. See Priest (2002a), 9.1.
13. A version of this paper was given at the conference Cardinality, Worlds, and

Paradox, University of Oslo, June 2016. Thanks go to the participants of the
conference for their comments.
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