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Abstract One of the most dominant approaches to semantics for relevant
(and many paraconsistent) logics is the Routley–Meyer semantics involving a
ternary relation on points. To some (many?), this ternary relation has seemed
like a technical trick devoid of an intuitively appealing philosophical story
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that connects it up with conditionality in general. In this paper, we respond
to this worry by providing three different philosophical accounts of the ternary
relation that correspond to three conceptions of conditionality. We close by
briefly discussing a general conception of conditionality that may unify the
three given conceptions.

Keywords Ternary relation · Ternary-relation semantics ·
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1 Introduction

Here is a familiar history: modal logics (see [15]) were around for some time
before a semantic framework was found for them (by Kripke and others).1 This
framework did at least two Very Good Things for modal logics: (1) it connected
the powerful mathematical tools of model theory to these logics, allowing a va-
riety of technical results to be proven, and (2) it connected modal logics (more)
firmly to philosophy and the rest of the world, allowing their application to the
understanding of metaphysics, tense, knowledge representation, agent theory,
scientific laws, modal verbs, and more. This application crucially depends not
only on simply having Kripke-style semantic frameworks, but on interpreting
the frameworks in various ways. The points of evaluation of the framework, in
various interpretations, might be metaphysically possible worlds, say, or times,
or morally allowable outcomes, or fictions of some sort, or . . . what have you;
these interpretations give modal logics an ‘applied semantics’ as opposed to
merely ‘pure semantics’.

1Here, and elsewhere in this paper, when we say ‘modal logics’ we mean ‘unary normal modal
logics’—those that have received the most philosophical attention.
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Relevant logics have a similar history. The logics themselves were articu-
lated and explored (see [1]) before semantic frameworks were found for them
[13, 28–30, 32, 35]. Of these frameworks, the one that’s had the most mileage
put on it is the Routley-Meyer one, and that’s the one we’re most concerned to
discuss here (although see Section 3.2 for comments on Urquhart’s and Fine’s
frameworks). You might at first think that, just as in the modal case, a semantic
framework for relevant logics would do (at least) two Very Good Things;
that is, that such a framework would (1) allow the exploitation of model-
theoretic techniques in the exploration of relevant logics, and (2) give relevant
logics a firmer connection to issues of broad philosophical import. As in the
modal case, this second connection would depend crucially on interpreting
the semantic framework, and especially the ternary relation which features so
prominently.

According to some, it’s here that the parallels between modal and relevant
logics break down, to relevant logic’s detriment. That the ternary relation does
(1), no one can doubt. The problem is with (2). The story goes like this: whereas
the binary relation invoked by Kripke in the semantics of modal logics has
several philosophically interesting and revealing interpretations (as relative
possibility, or as a temporal ordering, or as the relation of being-morally-ideal-
from-the-point-of-view-of, or . . . ), the ternary relation invoked by Routley and
Meyer has no such standardly accepted interpretations/applications. ‘Sure,’
the objector says (it helps here to imagine the hint of a sneer), ‘there are
mathematical structures of the sort described by Routley and Meyer, and those
structures bear important and interesting relations to the logics described by
Anderson and Belnap, but these logics were supposed to tell us something
interesting about conditionality, or at least some important kind of condition-
ality, and it would take more than just abstract mathematical structures to tell
us that. I want to know what it is that instantiates these structures that has
anything to do with conditionals.’2 Very well. In this paper we give an answer.
In fact we give three answers. Conditionality can be—and often is—thought
of in at least three ways. We will show that in whichever of these ways one
thinks of conditionality, the ternary relation makes perfectly good sense. In
Section 2, we set out more carefully the problem to be faced. In Section 3, we
explain an appropriate understanding of the ternary relation for three ways of
looking at conditionality. Section 4 draws some threads together and sums up.

2Peirce apparently anticipated the use of a ternary relation in analyzing law-like conditionals:

The idea of Thirdness is more readily understood. It is a modification of the being of one
subject which is a mode of the second so far as it is a modification of a third. It might be
called an inherent reason. The dormant power of opium, by virtue of which the patient
sleeps is more than a mere word. It denotes, however indistinctly, some reason or regularity
by virtue of which opium acts so. Every law, or general rule, expresses a thirdness, because
it induces one fact to cause another. [22, p. 48]
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2 Frame Semantics

2.1 Points and Relations

Routley–Meyer semantics and Kripke semantics are close cousins; both
evaluate sentences at various points. These points have sometimes been
more objectively/metaphysically interpreted as ‘worlds’ or times, and other
times more subjectively/epistemically interpreted as (evidential) situations, or
pieces/states of information. Sometimes they have been interpreted concretely
as theories (set of sentences), and other times they have been given neutral
names (indices, or Routley and Meyer’s ‘setups’). As far as we are concerned
they could be garden gnomes, or whatever. When we’re not concerned with
a specific interpretation, we’ll use the word ‘points’ to be maximally generic.
A model for a language, to a first approximation, can be taken to be a set of
points together with an evaluation of the language’s sentences at those points;
a sentence A either holds at a point x in a model M (in which case we write
x |=M A),3 or else it doesn’t (in which case we write x �|=M A).4

We can use these points to give semantics for the various connectives
that occur in the language. This amounts to restricting the evaluations to
those that respect certain dependencies among the language’s sentences.
Some connectives—here, conjunction (∧) and disjunction (∨)—are exten-
sional: whether a conjunction holds at a point in a model depends only on
whether its conjuncts hold at that very point in the model, and the same goes for
disjunction. Other connectives, like the modal necessity (�) and the relevant
conditional (→), are intensional: whether �A holds at a point in a model can
depend not just on whether A holds at that point in the model, but rather on
whether A holds or not at some other point(s) in the model. The same goes for
the value of A→B at a point in a model.

For each connective, extensional or intensional, a semantics must tell us
how compound sentences built with it depend on the holding-or-not of their
components, and for intensional connectives a semantics must tell us more:
it must tell us at which points it matters whether the component sentences
hold. It’s here that relations on points prove vital: to a second approximation,
a model is a set of points together with an evaluation of sentences at those
points (as before), together with a relation on those points for each intensional
connective in the language.

3We drop the M subscript when it’s clear from context, writing x |= A.
4The way we set things up here, every sentence must either hold or not (and not both) at any
point in any model, but we say nothing about negation, leaving open the possibility that A and
its negation might both hold or both fail to hold at the same point in a model. In fact this is more
than a mere possibility—it’s crucial to a relevant treatment of negation. But this paper isn’t about
negation, so we let the point pass. (For a more philosophical interpretation of the relevant ‘star’
semantics for negation, supported by the more formal investigations in [9], see [26].)
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Consider the modal �. The Kripke semantics for it appeals to a binary
relation R� on points: for any sentence A at any point x in any model M,

x |=M �A iff y |=M A for all y such that R�xy

Note that the unary connective � is given its semantics by appealing to a binary
relation R� on points. In fact, it turns out that n-ary connectives can often
be given good and sensible semantics by appealing to (n + 1)-ary relations on
points.5 This, we think, should lead us, at least at first, to expect that semantics
for our binary conditional connective will appeal to a ternary relation. The
expectation would be satisfied; in the semantics given by Routley and Meyer,
the crucial ternary relation R is involved in the semantics as follows: for any
sentences A and B at any point x in any model M:

x |=M A→B iff for all y, z such that Rxyz, if y |=M A, then z |=M B.

2.2 More is Required

So far, so good. But, says van Benthem [36], this is too easy.

There appears to be an over-application of the Henkin method in in-
tensional logic, generating facile possible world semantics. For instance,
could it be that the Routley semantics lacks explanatory power, due to its
lack of potential falsification?

So the semantics so far doesn’t even ensure that the ‘conditional’ defined
fails to be pure gibberish, let alone shed any light on conditionality.6

We agree, though we might quibble a bit about the details. But we concede
the spirit of the point. (See [31] for an extreme example of formal semantics
gone wild.) In order to provide a philosophically illuminating semantics of the
relevant conditional, we need to say more about what these models are: what
the points are, what the ternary relation R is, and why compound sentences—
in particular conditionals—are evaluated in the way that they are. What’s
more, this explication had better make it clear how these models relate to
conditionality; otherwise the semantics can be fairly accused of arbitrariness,
or of ad hocness, or of simply copying the phenomenon to be explained. In
short, the semantics are ‘merely formal’ and philosophically unilluminating—
at least if we want to understand the meaning of a conditional. So more is
required.

5This is the basis of Dunn’s Generalized Galois Logics (‘Gaggles’), a project begun in [8]—see [5]
for a summary, references, and new work. See also [6].
6We hasten to add that there is no hint of a sneer in van Benthem. The paper is a very open-
minded and fair one. And indeed, as very briefly noted in the Appendix (below), van Benthem
seems to have later had a kind of conversion experience regarding ternary accessibility with his
‘arrow logic’.
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3 Three Parsings of Conditionality

In order to provide this ‘more’, we now look at three very standard understand-
ings of conditionality: those that arise in the context of modal (absence-of-
counterexample), intuitionist, and conditional logics. We will show how each
familiar way is connected to the Routley–Meyer ternary relation.

Natural understandings of ternary relations, Rxyz, are often not egalitarian.
For many ternary relations, two of the three arguments naturally cluster
together, the other being out on its own. So it is in the interpretations of the
ternary relation we will consider. In the first interpretation we consider, the
second and third arguments go together: Rx〈yz〉. In the second interpretation,
it is the first and second that go together: R〈xy〉z. And in the third, it is the first
and third: Rx〉y〈z.

3.1 Modal (Absence-of-Counterexample) Conditionals: Rx〈yz〉

One way to think of a conditional ‘If A then B’ is as asserting an absence
of counterexamples. A counterexample, in this context, is a relevant ‘point’ at
which A (the antecedent) is true and B (consequent) ‘untrue’ or ‘false’ (in
some sense). What makes a point relevant turns on the details of the con-
ditional in question. For some (extensional) conditionals, like the (classical)
material conditional, the class C of relevant points—the class of candidate
counterexamples—is a singleton comprising only the point of evaluation (i.e.,
the ‘place’ at which the conditional is asserted): x |= A ⊃ B iff there’s no
counterexample in C = {x} iff x is not such that x |= A and x �|= B.7

Many conditionals consider a much broader class of candidate counterex-
amples than the point-of-evaluation singleton. We can ‘modal up’ to expand
our class of candidate counterexamples: the familiar (classical modal) strict
conditional A � B, defined as �(A ⊃ B), expands the class of relevant points
beyond the point of evaluation: in particular, our class C of strict-hook relevant
possibilities (i.e., candidate counterexamples for the strict hook) is now the
class of �-relevant possibilities, the class containing all points y in the ‘sight’ of
our �. In short, A � B is true at a point x iff there’s no relevant counterexam-
ple, no x-accessible y in C = {y : R�xy}, that is:

x |= A � B iff there’s no y such that R�xy and y |= A and y �|= B.8

These examples are familiar, and so too is the given pattern. The question
at hand is whether this absence-of-counterexample pattern is at work (or may

7These truth-at-a-point conditions are inappropriate for characterizing the material conditional
in target relevant logics, since x |= ¬A is not the same as x �|= A, but we use them here
because they’re familiar and illustrate the pattern we’re highlighting in the absence-of-relevant-
counterexample conception of conditionals.
8Again, the characterization is not strictly appropriate for a relevant account of �(¬A ∨ B), but
our concern here is more with the familiar pattern. (Besides, we are ignoring, as much as we can,
issues of negation in this paper.)



On the Ternary Relation and Conditionality 601

be seen as such) in the Routley–Meyer ternary semantics. On the surface, the
answer seems to be negative, since we seem not to be searching for coun-
terexamples in the target sense—single ‘points’ (however broadly construed)
at which the antecedent is true but consequent untrue. As above, the clause
for our relevant conditional A→B goes like this:

x |= A→B iff there’s no y, z such that Rxyz, y |= A and z �|= B.

But counterexamples, on the target conception, are supposed to be single
‘points’ or ‘places’ at which the antecedent is true and consequent untrue. Of
course, if we require of all models that Rxyz only if y = z, then the given truth-
at-a-point condition is perfectly in line with the absence-of-counterexample
pattern: the ‘ternary’ R is simply picking out the relevant points—the class of
candidate counterexamples. The trouble is that such a requirement makes for
irrelevant logic (in the technical sense of ‘irrelevant’): we need for y and z to
come apart if our conditional is to behave ‘relevantly’ (i.e., if we’re to give a
semantics for the target relevant logics).

The absence-of-counterexample pattern is nonetheless at work in the
Routley–Meyer ternary semantics. What’s going on (or what may be seen as
such) is that our conditional calls for a broader perspective on our universe of
candidate counterexamples; it calls us to recognize ‘pair points’ in addition to
our ‘old’ points.9 In particular, for any x, y ∈ W, let us say that 〈xy〉 is a half
point iff x = y, and that 〈xy〉 is a duo point if x �= y. Using ‘pair point’ to cover
both half and duo points, let us define truth at a pair point and untruth/falsity
at a pair point as follows, where |= is the standard truth-at-a-point relation in
the Routley–Meyer semantics.

• Truth at a pair point: 〈xy〉 |=1 A iff x |= A.
• Untruth/Falsity at a pair point: 〈xy〉 |=0 A iff y �|= A.

Worth noting is that these derivative truth- and untruth/falsity-at-a-pair rela-
tions collapse into our ‘old’ relation |= for all half points:

〈xx〉 |=1 A iff x |= A

and

〈xx〉 |=0 A iff x �|= A

But half points are not enough for relevance: we need duo points to break
irrelevancies such as A→. B→B and the like.

And now the absence-of-counterexample pattern comes into focus. The
pattern is present in the ‘ternary’ semantics; it’s just that the semantics asks
us to broaden our conception of candidates—broaden the ‘points’ that serve
as candidate counterexamples. In particular, the ‘ternary’ semantics asks us
to extend our notion of counterexample to pair points: a counterexample to
A→B is a relevant point w at which A is true and B ‘untrue’ or ‘false’ on

9This idea is briefly noted in [4, Ch. 2].
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the given relations: w |=1 A and w |=0 B. In many cases (e.g., p→q, etc.), half
points serve as counterexamples; but there are other cases (e.g., p→. q→q,
etc.) where the only counterexample w is a duo point w = 〈yz〉 for some y �= z.

One way of understanding pair points is by appeal to the theory of situated
inference [18]. That interpretation treats points as ‘situations’ [3], and distin-
guishes situations from worlds. Along these lines, pair points are simply the
objects that realize ‘information links’.

What are situations? What are information links? In a world there is
more than one situation. A situation is to be understood informationally. The
information available, say, in a particular room at a particular time constitutes
a situation. A person at a given time may exist in many, perhaps infinitely
many, situations. In addition to information about the occurrent properties
of things in the situation, such as the information that it is currently cloudy
or that a particular tree is in bloom, there may also be information that links
other information. For example, a law of nature can be an informational link.
It might tell us that the information that a heavy object is dropped near the
surface of the earth implies the information that the object will accelerate
towards the earth at a particular rate. Among informational links are laws
of nature, conventions, and any information that gives us a license to make
inferences.

The information in a situation not only tells us about that situation; it allows
us to make inferences about other situations in the same world. Suppose that
we are in a situation x in a world w and that x contains an informational link
that says that A carries the information B. Then from the hypothesis that there
is a situation y in w in which A is true, we can infer that there is a situation z
in w in which B is true.

In addition to informational links, in situated inferences we can manipulate
hypotheses in accordance with a set of principles. In [18] these principles all
come from Anderson and Belnap’s natural deduction system for the logic R.
Thus, for example, if we can infer in x that there is a situation in the same world
in which B given the hypothesis that y is in the same world, then from the
standpoint of the situation y, given the hypothesis that x is in the same world
we can also infer that there is a situation in the same world in which B obtains.
According to the rules of R, the order of the hypotheses in an inference does
not matter.

We can, however, liberalize the theory to cover other relevant logics. For
example, suppose that we want to adapt the theory to treat the logic E, in
which → is meant to represent necessary relevant implication. Then, we can
think of situated inference as taking place, not in a single world, but across
worlds. Suppose that we take as our initial starting point a situation x in a world
w, then we may make the hypothesis that y is in w′ and w′ is accessible from
w. Then we attempt to infer that there are other situations in w′ that contain
information of particulars sorts. This version of situated inference does not
allow us to permute hypotheses in the same way as does the theory based on
R. Other versions of the theory that reject contraction, the various versions of
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transitivity, or whatever, are also possible. These theories can be justified in so
far as the set of rules chosen can be made intuitive.

There is a counterexample to A → B in x iff there is a point pair 〈yz〉 that
realizes the informational links of x but y |= A and z �|= B. Thus, contrary
to initial appearances, the ‘ternary’ semantics fully exhibits the absence-of-
counterexample pattern. What the semantics calls for is recognition of ‘pair
points’ in addition to our ‘old’ points. The ‘ternary’ truth-at-a-point conditions
can now be seen as talking about the derivative relations |=1 and |=0 at pair
points: x |=1 A→B iff there’s no x-accessible counterexample, that is,

• x |=1 A→B iff there’s no w ∈ W2 such that Rxw and w |=1 A but w |=0 B.

On this way of looking at things, the familiar absence-of-counterexamples
conception of conditionality is respected in a fairly familiar fashion whereby
the candidate counterexamples are picked out by an ‘access’ relation. The
‘ternary’ relation is really just a familiar binary access relation; the difference
is that we now look beyond our familiar points, acknowledging another sort—
duo points. This pattern of expanding our perspective is familiar. Just as the
‘nature of necessity’ calls us to see more points beyond this one (i.e., beyond
the point of evaluation), so too with the nature of relevant conditionals: they
call us to see points in addition to our regular half points—to see duo points.

Parenthetical note We note that the idea of recognizing—even if only as
convenient fictions—pair points has precedent in Meyer and Routley [19], who
go so far as to suggest that the ternary R be interpreted as a relation between a
point and a pair of points. We are neutral here as to the degree of ontological
seriousness Meyer and Routley’s suggestion is to be taken; and even our own
discussion (above) should not be taken to reflect official ontology of any of us
(authors).

3.2 Conditionals as Operators: R〈xy〉z

In the last section, it was natural to think of the relation as a binary relation
of the form Rx 〈yz〉; the 〈yz〉 gives the loci of evaluations of the antecedent
and the consequent, and the x gives us a perspective on this, so to speak. In
the understanding of the ternary relation we will consider in this section, the
natural grouping is R 〈xy〉 z, the x and y cooperating to generate z.

One may think of a conditional, A→B, as something that provides a route
from A to B, an operator that, when applied to A, gives B. Thus, for example,
in intuitionist logic, A→B is standardly conceptualized as a construction
which takes you from a proof of A to a proof of B. The verificationist spin
is unnecessary. The operation can be thought of, realistically, simply as one
which takes you from the proposition expressed by A to the proposition
expressed by B. Thus, we may think of a conditional as a function which, when
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applied to the antecedent, gives you the consequent.10 (What the function does
to other arguments we can leave as a matter of indifference.) On its own, of
course, this is not enough: there are many functions which when applied to the
proposition expressed by A give the proposition expressed by B, for instance
the function which only takes A to B, that is, the singleton of the ordered
pair 〈A, B〉, namely, {〈A, B〉}. What it is for the proposition expressed by the
conditional A→B to hold in a situation, world, state of information or the
like is for the function it embodies to correspond to an inference which that
situation makes available or supports.

In the sequent calculi for relevant logic, there are two ways of grouping for-
mulas together, extensional—often denoted by a comma—and intensional—
often denoted by a semi-colon.11 A, B can be thought of as something like the
extensional conjunction of A and B. A; B can be thought of as something like
the functional application of A to B.12

An analogous notion of ‘application’ makes sense for worlds, where these
serve to determine both what the facts are and which inferences are available.
Where x and y are worlds, we may think of the compound x; y as the set of
propositions, body of information or partial setup resulting from y by applying
to it all the inferences provided by x. Classically, this amounts to the operation
of closure under logical consequence applied to x ∪ y, but in the more general
setting of relevant logics it behaves more like functional application of x to
y, without the special combinatory properties of set union.13 If there is an
implication operator → on propositions expressing a function from antecedent
to consequent corresponding to inference, therefore, x; y should be, or at any
rate warrant the assertion of, those propositions b such that for some a, a→b
is warranted by x and a by y.

The obvious thing is then to define Rxyz as meaning that z is, or has the
information content of, x; y. This won’t quite do, because there is no reason
why, in this case, z should be one of the worlds. Crucially, we may have a ∨ b
(the proposition expressed by A ∨ B) in z, even though neither of a nor b is—
as one would require for the standard truth conditions for disjunction. One
can try to get around this problem by non-standard, or otherwise contrived,
treatments of disjunction. However, it is simpler to define Rxyz for worlds x,
y and z, as meaning that at least everything warranted by x; y holds at z, or in

10See, further, [24].
11These two ways originated in the work of Dunn and Mints around 1970, where they showed how
to provide a cut-free Gentzen system for the positive fragment of the relevant logic R. Restall [27,
Ch. 2] contains (p. 125) a history of how this led to Belnap’s Display Logic and other developments.
See also [33].
12But only something like: if we had (A→B); A = B, then we would have both (A→B); A � B
and B � (A→B); A. The first is relevantly valid; the second is not even classically valid.
13See [20] for an account of relevant implication in terms of such an application function. In that
paper, in the spirit of seeking ‘applied’ semantics, Routley–Meyer models were considered as
a treatment of multi-agent reasoning, where one agent provides the inferences and another the
premises.
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symbols, given a reading of worlds as sets, x; y ⊆ z. That is, the ternary relation
we want is that z is at least as strong as x and y put together—where ‘put
together’ is capable of several readings including the one we prefer in terms of
inference. The Routley–Meyer truth condition for the implication connective
falls out naturally.14

3.3 Conditional Logics: Rx〉y〈z

In the last two sections we have examined in turn what happens when we
group together the last two terms Rx〈yz〉 and then what happens when we
group together the first two terms R〈xy〉z. In the present section we consider
grouping the first and last terms together, in an ugly notation: Rx〉y〈z.

One way to look at the conditional in so called conditional logics is as
describing some kind of relativized necessity—in effect, a link along the lines
of A→B iff �A B iff B is necessary-in-an-A-ish-way. This is the point of view
taken in [23, Ch. 5], where they are given semantics as follows. Where RA is a
binary relation on points determined by A (e.g., in the familiar framework of
Lewis [16], RAxy could, given some assumptions, be defined as y is one of the
A-satisfying worlds closest to x):

x |= A ⇒ B iff z |= B for all z such that RAxz

Without further restriction, this imposes certain logical relations on the conse-
quents of conditionals; for example, if A→B and A→C both hold at a point,
then A→B ∧ C must hold there too, and vice versa. Also, if C holds at every
point where B does (which it will if B entails C), then if A→B holds at a
point, so too must A→C.15 But no logical relations are yet imposed on the
antecedents of conditionals by this formulation, since there is no requirement
that �A and �B have anything to do with each other, no matter what logical
relations hold between A and B. Thus, we can even have logically equivalent
sentences A and B such that A→C holds at a point but B→C fails there!

Although this gives us a great deal of flexibility, it gives too much. If we
want to focus on conditionality, a more restrictive model is appropriate.16 A
first step might be to require intersubstitutability of logical equivalents. This is
easy to do; we simply let our relations be indexed not by sentences, but instead
by sets of points. (These sets of points can be considered what Alan Anderson
dubbed a ‘UCLA proposition’, i.e., the set of points at which the proposition is

14Naturally, but not trivially: the fact that x; y is, so to speak, the intersection of all the worlds that
extend it is a key lemma in the usual completeness proof for relevant logics.
15That is, �A is a normal modal necessity, for any sentence A.
16Some of the restrictions we make here are contentious, but we think alleged counterexamples
to the inferences in question trade on shifts in context, and so fail as demonstrations of invalidity.
(For an overview of the alleged counterexamples, and substantially this response, see [17].) If that
doesn’t persuade you, you can read us as describing a certain sort of conditional, the sort that holds
just when the antecedent is sufficient for the consequent.
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true.) Where |A|M is the set of points in the model M at which A holds,17 we
can then restate the above clause like so:

x |= A ⇒ B iff z |= B for all z such that R|A|xz.

Since logically equivalent sentences hold at all the same points, this will have
the desired effect.

Parenthetical historical note The equivalence of conditionals with the same
consequent and equivalent antecedents has a complicated history in the litera-
ture. It is valid on Lewis’s semantics, since his RA is defined in terms of worlds
satisfying A, but the axiomatization in the first edition of [16] does not yield it,
as was pointed out by Erick C. W. Krabbe [14]; a patch is added in the second
edition. In Stalnaker and Thomason’s related systems [34], the equivalence
is forced by the rule that A→C may be inferred from A→B, B→ A and
B→C; there was some (unpublished) discussion of the intuitive validity of this
principle in the 1970s. Van Fraassen [38] gave a semantics for a conditional
logic without this, essentially by indexing relations with formulas.

There is yet more logical structure to be had. Antecedents of conditionals,
for example, are a classic example of a downward-entailing environment: if A
entails B, then if B→C is true at a point, A→C should be true there too. We
can ensure this straightforwardly as follows: we require of our models that, for
any sets X and Y of points, if X ⊆ Y, then RX ⊆ RY .

So far so good. But this still allows for A→C and B→C to both hold
at a point without A ∨ B→C holding there. This is out of line with our
understanding of conditional sentences. To rule out cases like this, we can
impose a further restriction on our models, where Wis are sets of points:
R⋃{Wi} ⊆ ⋃{RWi}.18

Comparative note wrt [16] For the reader familiar with Lewis’s semantics
[16], which we’ve noted in passing above, we note that that semantics does
not guarantee that A→C and B→C will always hold at x if (A ∨ B)→C does;
counterexamples arise when one of A and B is more ‘far-fetched’ than the
other. This was criticized as counterintuitive by Nute [21]. The ternary relation
semantics for relevance logics, and its generalizations in Dunn’s Gaggle Theory
[8], do validate ‘distribution’ equivalences like this.

In fact, we can combine these last two restrictions into one: where Wis are
sets of points, we require that R⋃{Wi} = ⋃{RWi}. One direction of this equality

17We drop the subscript M when no confusion will arise, which is nearly always.
18 This is slightly stronger than what we’d need, so long as there’s no infinitary disjunction in the
language. But it’s clear, we think, that if there is infinitary disjunction in the language, it should
work in this way too; that is, that if Ai→C holds at a point for every Ai, then

∨{Ai}→C holds
there too. That requires the condition we’ve given, so we’ll stick with it.
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is simply our second requirement; the other direction is equivalent to our first
requirement.19

At this point, we’ve restricted our models so that certain inferences come
out valid. Here, we show that these restrictions bring with them our familiar
ternary-relational semantics. To remind, we have:

• x |= A ⇒ B iff for all z such that R|A|xz, z |= B
• R⋃{Wi} = ⋃{RWi}

Given, by a model, relations RY for each set Y of points, we can define, for
that model, a ternary relation R on points as follows: Rxyz iff for all sets Y of
points such that y ∈ Y, RY xz. Thus, this way of getting to a ternary relation
takes the middle term, y, to be the ‘special’ one; it thus fills out the three
possible perspectives on the relation. Now, take x to be any point in a model
meeting our restrictions, then:

(*) z |= B for all z such that R|A|xz iff z |= B for all y, z such that Rxyz and
y |= A.

Proof LTR Assume there is a point x in some model such that Rxyz, y |= A,
but z �|= B. Since y |= A, y ∈ |A|. And since Rxyz, it must be that R|A|xz. ��

Proof RTL Assume there is a point x in some model such that R|A|xz and
z �|= B. Suppose there is no y ∈ |A| such that Rxyz. Then, for every yi ∈ |A|,
there must be some set Yi such that yi ∈ Yi and 〈xz〉 �∈ RYi . Since this is so
for each Yi, it must be that 〈xz〉 �∈ ⋃{RYi}, and so 〈xz〉 �∈ R⋃{Yi}. But we can
see |A| ⊆ ⋃{Yi}, so 〈xz〉 �∈ R|A|. Contradiction. Thus, there must be a y ∈ |A|
such that Rxyz. ��

Fact (*) shows us that, when our models are properly restricted for condi-
tionals, the conditional-logic clause invoking binary relations indexed by sets
of points can be replaced by the familiar Routley–Meyer clause invoking a
ternary relation definable from the indexed binary relations.

Suppose, then, that the usual indexed-relation model theory for conditional
logics is intelligible as more than merely formal, as an applied semantics. The
equivalence between the indexed-relation model theory and the ternary-R
model theory allows us to pass that application on to the ternary-R models;
they too can be understood as applied.

For example, suppose that points are possible worlds, and that RAxy iff
y is one of the A-satisfying worlds closest to x (Lewis’s gloss). Then Rxyz
iff for every proposition (set of worlds) Y satisfied at y, z is one of the
Y-satisfying worlds closest to x. Given the features of conditionality we’ve

19Proof Assume our first requirement, and that y ∈ ⋃{RWi }. Then y ∈ RWk , for some k. Since
Wk ⊆ ⋃{Wi}, y ∈ R⋃{Wi}, by our first requirement. Now, assume

⋃{RWi } ⊆ R⋃{Wi}, and that X ⊆
Y. This means X ∪ Y = Y, so RX ∪ RY = RX∪Y = RY , and thus RX ⊆ RY . ��
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pointed to above, the truth-conditions provided by the Lewis semantics and
those provided by (this application of) the Routley–Meyer semantics are
equivalent, and they are grounded in the very same features of the space of
worlds: closeness and satisfaction. So long as those features serve to make the
Lewis semantics intelligible as an applied semantics, they will as well serve to
make this Routley–Meyer semantics intelligible as an applied semantics. Other
applications of the indexed-relation model theory will give rise to other appli-
cations of Routley–Meyer model theory in the same way, mutatis mutandis.

Parenthetical note We remind, for readers thinking along with us via a
comparison with Lewis’s framework [16], that Lewis’s semantics is often
formulated in terms of a ternary relation between worlds: y is more similar
(or is counterfactually closer to) x than z is. It is not, however, a special case
of the Routley–Meyer semantics: the quantificational structure of the clause
giving the truth conditions for Lewis’s arrow in terms of his ternary relation is
more complicated than that of the Routley–Meyer clause, which is what allows
such pathologies as that in the comparative note wrt [16].

4 Bringing the Threads Together

What we have now done is show, as promised, that whatever it takes to be a
conditional—at least in modal, intuitionist, and conditional logics—the ternary
R has got it. But is there a perspective which unifies these three perspectives?
Here is one suggestion.20

Consider the relation R to be a relation of relative relative possibility; that
is, take it that Rxyz just when z is possible relative to y, relative to x.21 (See
Appendix for a brief sketch on the history of this suggestion.)

To get a grip on what relative relative possibility is, it will help to return to
the modal case: simple relative possibility. When is a point z possible relative
to y? When everything required (necessary) at y holds at z. Note that nothing

20On the other hand, we could keep the three perspectives separate to see whether they motivate
different logics. For example, consider the functional interpretation of →. If we allow ourselves
some ‘type-lifting’ we can take the proposition A to be a function from A→B to B. Thus, on
this interpretation, we might want to say that any point that satisfies A also satisfies (A→B)→B.
We can enforce that by placing the condition on frames that if R〈xy〉z then R〈yz〉z. Of course,
type-lifting is not forced on us by the functional interpretation, but it seems natural in that context,
whereas on the other two interpretations it seems convoluted at best.
21It is important to note that this cannot be understood as ‘relative product’: xSy & ySz. In the case
of the relevant logic R it is an easy exercise to show from Routley and Meyer’s conditions on R
that it would then be a congruence connecting every set of points on the frame, and so effectively
there would be just one point and we would be back to classical logic. Incidentally, it is also known
that the ternary relation cannot be defined as xSz & yTz. See [7]. It would be nice to have a more
general result about R not being first-order definable using just binary relations.
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in this picture guarantees that what’s required at a point holds at that point.
For example, A might be required at y without holding at y; then y would
not be possible relative to itself. We write �B to record B’s being required
somewhere, and there is only this one constraint on relative possibility.

What happens, then, if we want to consider different constraints beyond
just �B’s requiring B? What if we wanted to consider the phenomenon of
constraint in general, of A’s requiring B? (This, it should be clear, is where
conditionality arrives on the scene.) Well, as before, z is possible relative
to y iff everything required at y holds at z; that is, iff for every constraint
whose antecedent holds at y, its consequent holds at z. Again, nothing here
guarantees that what’s required at a point holds at that point. If there’s a
constraint whose antecedent holds at y and whose consequent doesn’t, then y
isn’t possible relative to itself. But now, since we want to explore conditionality
in general, we want different constraints to hold at different points. This
requires that whether z is possible relative to y can itself only be answered
relative to a point x with its constraints. Thus, we see built in to the very notion
of conditionality the idea of relative relative possibility—the ternary relation
we’ve been calling R. It’s no surprise, then, that R keeps on turning up when
we examine conditionality.

All three of our foregoing readings of relation R can be seen in this light.
Think of our first gloss, in terms of counterexamples. For the pair point 〈yz〉
to count as a counterexample, according to x, is simply for z to be relatively
possible from y, according to x: if everything required at y, according to x,
holds at z, then if A holds at y but B doesn’t hold at z, A can’t require B
according to x.

When it comes to our second gloss, in terms of functions, we can now offer
a story as to what kind of function is in play. The conditional A→B is not
just any function from A to B; it’s a function which, by outputting B given A,
tells us that B is required by A. If Rxyz represents relative relative possibility,
then x and y fix the two parameters possibility is relative to. z is possible
(relative to x and y) iff everything required (at y, according to x) holds at z.
(This offers us another explanation for why Rxyz is better defined as x ◦ y ⊆ z
than as x ◦ y = z. To be possible relative to x and y, z only needs to meet the
requirements imposed by x at y; there’s nothing stopping it from going beyond
these requirements.)

Third, this way of thinking clarifies the conditional-logic picture as well. We
can read RY xz as telling us that everything that x requires to follow from the
proposition Y holds at z. Supposing (as in Section 3.3) that x’s requirements
are suitably organized, this boils down to Rxyz again: everything x requires
to follow from any proposition that holds at y holds at z. This is, once more,
relative relative possibility.

The idea of relative relative possibility thus gives us a single picture of the
ternary relation R. As we’ve seen, we can elaborate this picture in any of three
ways, depending on which argument place we wish to focus on. But however
you slice it, relative relative possibility is intimately connected with the idea of
conditionality: what it is for one thing to require another. This is captured by
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the ternary relational semantics for →. It is anything but an empty formalism;
it is at the very core of the nature of conditionality.22

Appendix: Historical Note

The idea behind relative relative possibility discussed in Section 4 was sug-
gested to Routley and Meyer by Dunn in response to his reading an early
draft of their first paper on the semantics of entailment. They cite him in their
published version [30, p. 206]:23

Consider a natural English rendering of Kripke’s binary R. xRy ‘says’
that ‘world’ y is possible relative to world x. An interesting ternary
generalization is to read xRyz to say that ‘worlds’ y and z are compossible
(better, maybe, compatible) relative to x. (The reading is suggested by
Dunn.)

Peter Woodruff soon after suggested to Dunn that the ternary accessibility
relation be viewed as an indexed set of binary accessibility relations. See [11].
To spell this out a little, we could define a Routley–Meyer frame simply as
a Kripke frame for a (normal) multi-modal logic together with a function
assigning to each world x one of the binary accessibility relations Rx and
thus one of the necessity operators �x with y |= �x B iff ∀z(Rx yz ⇒ z |= B).
Where G is the real (base) world of a (reduced) frame, the appropriate box for
G is just truth. That is, �G B is (or is equivalent to) B. Other worlds, however,
have their own perspectives on where B is required to hold if �x B is to
hold at y.

Then the relevant implication connective is such that

x |= A→B iff ∀y(y |= A ⇒ y |= �x B).

Even more neatly, A→B holds at x iff A→�x B is true (holds at G), where
A→B holds at G iff B holds everywhere that A holds.

A little more is required for the technical care and feeding of the monotonic-
ity postulate on Routley-Meyer frames, but the point that this construal makes
modal sense of relevant conditionals is clear enough.

The necessity operator with the single world x indexing a single binary
relation can be generalized to an operator [X] with a set of worlds X indexing
many binary relations, as in Dunn’s interpretation of Pratt’s dynamic logic
in [11]. It has the truth condition y |= [X]B iff ∀x ∈ X, ∀z(Rx yz ⇒ z |= B).

22In this paper, because of our investigations of ‘relative relative possibility’, we have focused
on the three ways of elaborating Rxyz by different groupings of its terms: R〈xy〉z, Rx〈yz〉, and
Rz〉y〈z. The reader may naturally wonder what happens if we just take the ternary relation
in its pure unadulterated ‘flat’ form Rxyz, leaving the grouping notations out. We leave these
speculations to the reader.
23We change the original notation to conform to our notation in this paper.
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Equivalently, we can reduce the many binary relations to a single one, defining
RX yz to mean ∃x ∈ X(Rx yz), and then y |= [X]B iff ∀z(RX yz ⇒ z |= B) We
may view X as indexing a binary relation, and so we get a special case of the
operator �A of Section 3.3 when the sentence A is replaced, as ultimately
suggested there, by a set of points X.

Dunn has more recently exploited Woodruff’s construction as a duality
between data (static) and computation (dynamic). The basic idea is that
propositions can be viewed as either sets of states or as the set of actions
these states index. See [11] for a general explanation, and [12] and [10] for
concrete applications. Barwise [2] had a formally similar idea, which was of
two ‘sites’ being connected by a ‘channel.’ He did not rule out the case where
channels might also be sites. See also [25]. Mention should also be made of van
Benthem’s ‘arrow logic’ [37].
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