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1 Introduction: Vagueness and Self-Reference

Sorites paradoxes and the paradoxes of self-reference are quite different kinds
of creature. The first are generated by the fact that some predicates have
a certain kind of tolerance to small changes in their range of application.
The second are generated by the fact that some things can refer, directly or
indirectly, to themselves. Or so it seemed to me until recently. I am now
inclined to think differently. The paradoxes of self-reference can naturally
be seen as having a form given by the Inclosure Schema. In the Schema, a
construction is applied to collections of a certain kind to produce a different
object of the same kind. Contradiction arises at the limit of all things of
that kind. Sorites paradoxes can be seen as having exactly the same form.
In this paper, I will start by explaining how. Given that paradoxes of sorites
and self-reference are of the same kind, they should have the same kind of
solution. I hold that a dialetheic solution is the correct one for paradoxes
of self-reference. It follows that a dialetheic solution is therefore appropriate
for sorites paradoxes. The rest of the paper investigates what such a solution
is like, and especially so called “higher order” vagueness.

2 The Inclosure Schema

Let us start with the Inclosure Schema and its application to the paradoxes
of self-reference.1 An inclosure paradox arises when for some monadic predi-
cates ϕ and θ, and a one place function, δ, there are principles which appear
to be true, or a priori true,2 and which entail the following conditions. (It

1For details of the following, see Priest (1995), esp. Part 3.
2Priest (1995), p. 277.
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is not required, note, that the arguments entailing the conditions be sound,
though dialetheism prominently allows for this possibility.)

1. There is a set, Ω, such that Ω = {x : ϕ(x)}, and θ(Ω) (Existence)

2. If X ⊆ Ω and θ(X):

(a) δ(X) /∈ X (Transcendence)

(b) δ(X) ∈ Ω (Closure)

(A special case of an inclosure is when θ(X) is the vacuous condition, X = X,
and so mention of it may be dropped.) Given these conditions, a contradic-
tion occurs at the limit when X = Ω. For then we have δ(Ω) /∈ Ω∧δ(Ω) ∈ Ω.

To illustrate: In the Burali-Forti paradox, ϕ(x) is ‘x is an ordinal’, so
that Ω is the set of all ordinals, On—defined, let us assume, as von Neumann
ordinals. θ(X) is the vacuous condition; and δ(X) is the least ordinal greater
than every member of X. By definition δ(X) satisfies Transcendence and
Closure. The brunt of the Burali-Forti paradox is exactly in showing that
δ(X) is well defined, even when X = Ω. The reasoning shows that On is
itself an ordinal—an ordinal greater than all ordinals.

In the liar paradox, ϕ(x) is the predicate Tx, ‘x is true’, so that Ω is the
set of true sentences; θ(X) is the predicate ‘X is definable’, i.e., is a set that
is referred to by some name; if X is definable, let N be an appropriate name;
then δ(X) is a sentence, σ, constructed by an appropriate self-referential
construction, of the form 〈σ /∈ N〉. (I use angle brackets as a name-forming
device.) Liar-type reasoning establishes Transcendence and Closure. The
liar paradox arises in the limit. Ω = {x : Tx}, and δ(Ω) is a sentence, σ, of
the form 〈σ /∈ {x : Tx}〉, i.e., ‘σ is not true’.

3 Sorites and Inclosures

Let us now see how sorites paradoxes fit the Schema.
In a sorites paradox there is a sequence of objects, a0, ..., an, and a

vague predicate, P , such that Pa0 and ¬Pan; but for successive members
of the sequence there is very little difference between them with respect to
their P -ness, so that if one satisfies P , so does the other—the principle of
tolerance.

For the Inclosure Schema, let ϕ(x) be Px, so Ω = {x : Px}; θ(X) is
the vacuous condition. Ω is a subset of A = {a0, ..., an}—indeed, a proper
subset, since an is not in it—and so we have Existence. If X ⊆ Ω then,
since X is a proper subset of A, there must be a first member of A not in
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it. Let this be δ(X). By definition, δ(X) /∈ X. So we have Transcendence.
Now, either δ(X) = a0 (if X = φ), and so Pδ(X); or (if X 6= φ) δ(X) comes
immediately after something in X ⊆ Ω, so Pδ(X), by tolerance. In either
case, δ(X) ∈ Ω, so we have Closure.

The inclosure contradiction is of the form δ(Ω) /∈ Ω ∧ δ(Ω) ∈ Ω. In
the case of the sorites paradox, the contradiction is that the first thing in
the sequence that is not P is P . Diagonalisation takes us out of X; and
tolerance keeps us within Ω. We see why a contradiction occurs at the limit
of P -things.

If the self-referential paradoxes and sorites paradoxes are of the same
kind, the Principle of Uniform Solution—‘same kind of paradox, same kind
of solution’—tells us that we should expect the same kind of solution.3 I
take the correct solution to the paradoxes of self-reference to be a dialetheic
one.4 It follows that the solution to the sorites paradoxes should be so too. A
simple-minded thought is this: In the case of the paradoxes of self-reference
we endorse the soundness of the arguments. These establish certain contra-
dictions, the trivialising consequences of which are avoided by not endorsing
Explosion. We should just do the same in sorites paradoxes: endorse the
soundness of the arguments. But this cannot be right. Sorites paradoxes
are, in their own right, as near triviality-making as makes no difference. One
can prove that an old thing is young, that a red thing is blue, and anything
else for which one can postulate an appropriate sorites progression. We must
be less simple-minded. What follows is, hopefully, so.

4 The Structure of Sorites Transitions

Come back to the sorites progression of section 3. Pa0 is true (and true
only); Pan is false (and false only). If we write the least-number operator as
µ then δ({x : Px}) is µh(ah /∈ {x : Px}, that is, µh¬Pah.5 Let this be ai.
The Inclosure Schema tells us that ai ∈ {x : Px} and ai /∈ {x : Px}, that is,
Pai∧¬Pai. So we know that there is at least one h for which Pah is both true
and false. For all we have seen so far, there may be more than one. If there
are, there is no reason, in principle, why these should be consecutive,6 but
the uniform nature of a sorites progression at least suggests this. Assuming

3Priest (1995), 11.5, 11.6, 17.6.
4Priest (1987), (1995).
5In naive set theory, the comprehension schema schema gives: y ∈ {x : Px} ↔ Py, and

contraposition gives y /∈ {x : Px)} ↔ ¬Py.
6The Technical Appendix to Part 3 of Priest (1995) constructs models of the Inclosure

Schema where some ordinals are consistent and some are not. Section 4 of the Appendix
gives a model in which inconsistent ordinals need not be consecutive.
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it to be so, the structure of a sorites progression will look like this, where ak
is the last thing that is P , and i ≤ k.7

a0 ... ai ... ak ... an
[− − P − −]

[− − ¬P − −]

We can think of the sequence of dialetheic objects as providing a transition
from the things that are definitely P to the things that are definitely not P .
Many have argued that in sorties progressions there is a borderline area where
the relevant statements have truth value gaps. What intuition actually tells
us is that in the middle of the progression, things are symmetric with respect
to the ends. The statements about the transition objects should therefore
be symmetric with respect to the statements about the ends. And from this
point of view, being both true and false is as good as being neither.8

Most importantly, however, note the position of ai. It might be thought
that the first thing that is not P should be ak+1, but it is not. The first thing
that is not P is actually identical with, or to the left of, the last thing which
is P ! ak+1 is not the first thing that is not P , but the first thing of which P
is not true. We are in the territory of higher order vagueness here. We will
turn to that matter later.

5 Sorites Arguments

What does this tell us about sorites arguments? What tolerance tells us is
that for some appropriate biconditional, ⇔, Pah ⇔ Pah+1 (for 0 ≤ h < n).
The sorites argument is then of the form:

Pa0 Pa0 ⇔ Pa1
Pa1 Pa1 ⇔ Pa2

Pa2
. . .

Pan−1 Pan−1 ⇔ Pan
Pan

The next question is what this biconditional is. The correct understand-
ing is, I take it, that it is a material biconditional, ≡: consecutive sorites

7It is clear from the diagram that {x : Px} ∩ {x : ¬Px} is not empty. But since this
set is {x : Px} ∩ {x : Px}, it is empty as well. It is difficult to represent this fact in a
consistent diagram!

8See Hyde (1997).
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statements have the same truth value. This is what, it seems to me, tolerance
is all about. Thus, where α ⊃ β is ¬α∨β, we have (Pah ⊃ Pah+1)∧ (Pah ⊃
Pah+1). This is true if Pah and Pah+1 are both true or both false. (If one is
true and the other is false, it is false as well.)

Given this understanding of the conditional, every major premise of the
argument is true. For every h, Pah and Pah+1 are both true or both false.
But assuming an appropriate paraconsistent logic,9 the disjunctive syllogism
(DS)—modus ponens (MP) for the material conditional—is invalid: α, α ⊃
β 0 β; and of course, exactly the same is true of the material biconditional.

It should be noted that, though the sorites argument itself is invalid, the
situation is still inconsistent. The sorites is generated by the sentences:

Pa0

¬Pan

(Pah ≡ Pah+1) (0 ≤ h < n)

From these, we cannot prove Pah∧¬Pah, for any particular h; but can prove:∨
0≤h≤n

(Pah ∧ ¬Pah)

To see this, write αh for Pah. Then α0 and α0 ≡ α1 give (α0 ∧ ¬α0) ∨ α1.
This, plus α1 ≡ α2, give (α0 ∧¬α0)∨ (α1 ∧¬α1)∨ α2; and so on till we have
(α0∧¬α0)∨ ...∨ (αn−1∧¬αn−1)∨αn. Whence ¬αn gives the result. In other
words, this information tells us that the inclosure is located somewhere along
the track; but it, itself, does not tell us exactly where.

6 “Extended” Paradoxes of Self-Reference

We now come to the vexed question of so called higher order vagueness. Let
me start, for reasons that will become clear later, by talking about an ap-
parently different issue: “extended paradoxes” in the context of the semantic
paradoxes. When people offer solutions to the semantic paradoxes of self-
reference, it always seem to turn out that the machinery that they deploy to
solve them allows the formulation of paradoxes equally virulent—or maybe
better, simply moves the old paradox to a new place. Let me illustrate with
respect to the liar and truth value gaps.

9In what follows, we will take this to be the logic LP of Priest (1987), ch. 5; but
matters are much the same in virtually every paraconsistent logic.
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The semantic paradoxes deploy the T -schema. If we write T for the truth
predicate, and angle brackets for naming, then the T -schema is the principle
that:

T 〈α〉 ↔ α

for every closed sentence, α (where ↔ is an appropriate, detachable, bicon-
ditional10). Writing F for the falsity predicate, so that F 〈α〉 is T 〈¬α〉, the
simple liar paradox is a sentence, λ0, obtained by some technique of self-
reference, of the form F 〈λ0〉. Substituting in the T -schema, we get:

T 〈λ0〉 ↔ F 〈λ0〉

The Principle of Bivalence tells us that for all α:

T 〈α〉 ∨ F 〈α〉

and applying this to λ0, we infer T 〈λ0〉 ∧ F 〈λ0〉: λ0 is both true and false.
A standard suggestion is to avoid this conclusion is to deny the Principle

of Bivalence. Sentences are not necessarily true or false; some are neither
(N). So the Principle is replaced by:

T 〈α〉 ∨ F 〈α〉 ∨N 〈α〉

True, we can no longer infer that λ0 is both true and false, but now we can
construct the “extended liar paradox”, a sentence λ1 of the form F 〈λ1〉 ∨
N 〈λ1〉. Substituting this in the T -schema, we get:

T 〈λ1〉 ↔ (F 〈λ1〉 ∨N 〈λ1〉)

And all three of the possibilities lead to trouble.
Such a conclusion is obviously fatal to gap-theories of this kind. Some

have thought that extended paradoxes of the same kind sink dialetheic (“glut”)
theories. That T 〈λ0〉∧F 〈λ0〉 is obviously no problem for a glut theory. The
extended liar is now a sentence, λ2, of the form: F 〈λ2〉 ∧ ¬T 〈λ2〉 ; or given
that there are no gaps, so that anything not true is false, just ¬T 〈λ2〉. Sub-
stituting in the T -schema gives:

T 〈λ2〉 ↔ ¬T 〈λ2〉
10For the sake of definiteness, let this be the conditional of Priest (1987), 19.8.
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and so, given the Law of Excluded Middle, T 〈λ2〉 ∧ ¬T 〈λ2〉. But only a
little thought suffices to show that this is no problem for a dialetheist. Di-
aletheism was never meant to give a consistent solution to the paradoxes.
(Even in the case of the simple liar, things are inconsistent, since we have
λ0∧¬λ0.) The point was to allow contradictions, but in a controlled way. The
“extended” argument does show, however, that the very categories deployed
in a dialetheic account of the paradoxes are themselves subject to the very
sort of inconsistency they characterise. This is, indeed, to be expected. We
may show, moreover, that all the inconsistencies generated are under control,
by constructing a single “semantically closed” theory, which is inconsistent,
but in which the inconsistencies are quarantined. Specifically, we can take
a first-order language with a truth predicate, T , and some form of naming
device, 〈.〉. We can then formulate a theory in this language, which contains
all instances of the T -schema, and an appropriate form of self-reference. The
theory can be shown to be inconsistent, but non-trivial.11

7 Higher Order Vagueness

Let us now return to vagueness. Sorites paradoxes occur because the nature
of the transition in a sorites progression is problematic. The straight-forward
picture:

a0 ... ... ... ... an
[− P −] [− ¬P −]

jars because of the counter-intuitive nature of the cut-off point between the
true and the false. The solution that we have been looking at removes this
cut-off point. But though the machinery does so, it produces, instead, two
others—one between the true only and the both true and false, and one
between the false only and the both true and false:

a0 ... ai ... ak ... an
[− − P − −]

[− − ¬P − −]

and these would seem to jar just as much. As with the extended liar paradox,
the machinery of the proposed solution allows us to produce a phenomenon
of the same acuity. What is one to say about this?

The natural thought is that these cut-offs should be handled in exactly
the same way. Consider, first, the right-hand boundary. This is located

11Specifically, no inconsistencies involving only the grounded sentences of the language
(in the sense of Kripke) are provable. See Priest (2002), 8.2.
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between those a of which P is true and those of which it is not. Let us now
use T , not for the truth predicate, but for the binary truth-of (satisfaction)
relation. Specifically if α is a formula of one free variable, say y, let the
S-schema be:

T 〈α〉x↔ αy(x)

where the right hand side is the result of replacing all free occurrence of y
with x (clashes of bound variables being handled by suitable relabelling).
In particular, for our vague predicate, P , we have T 〈Py〉x ↔ Px. When
the variable is clear from the context, I will omit it to keep notation simple.
Thus, I will write T 〈Py〉 simply as T 〈P 〉. Then the S-scheme amounts to
this:

(*) T 〈P 〉x↔ Px

Now, the predicate T 〈P 〉 would seem to be just as vague as the predicate
P . In particular, it would seem to be just as tolerant to small changes in
its argument as the predicate P . Indeed, (*) would seem to tell us that the
tolerances of P and T 〈P 〉 march together. It follows that the predicate is
just as soritical; and just as the original sorites was generated by a set of
sentences:

Pa0, ¬Pan

Pai ≡ Pai+1 (0 ≤ i < n)

So a sorites is generated by the sentences:

P 〈T 〉 a0, ¬T 〈P 〉 an

T 〈P 〉 ai ≡ T 〈P 〉 ai+1 (0 ≤ i < n)

The predicate T 〈P 〉 also gives rise to an inclosure. Let ϕ(x) be T 〈P 〉x,
so Ω = {x : T 〈P 〉x}; θ(X) is the vacuous condition. Ω is a subset of A = {a0,
..., an}—indeed, a proper subset, since an is not in it. If X ⊆ Ω then, since X
is a proper subset of A, there must be a first member of A not in it. Let this
be δ(X). By definition, δ(X) /∈ X, Transcendence. Now, either δ(X) = a0
(if X = φ), and so T 〈P 〉 δ(X); or (if X 6= φ) δ(X) comes immediately after
something in X ⊆ Ω, so T 〈P 〉 δ(X), by tolerance. In either case, δ(X) ∈ Ω,
Closure. The contradiction is that T 〈P 〉 δ(Ω) ∧ ¬T 〈P 〉 δ(Ω).

Similar considerations apply at the left-hand boundary. Let us write
F 〈P 〉x, ‘P is false of x’, for T 〈¬P 〉x. A predicate is vague (tolerant) iff
its negation is. In particular, ¬P is just as vague as P . And since, as the
S-Schema tells us:
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F 〈P 〉x↔ ¬Px

F 〈P 〉 is a vague predicate, as, then is ¬F 〈P 〉. We therefore have a sorites
generated by the sentences:

¬F 〈P 〉 a0, F 〈P 〉 an

F 〈P 〉 ai ≡ F 〈P 〉 ai+1 (0 ≤ i < n)

Note that α ≡ β is logically equivalent to ¬α ≡ ¬β.
And as is to be expected, this boundary is another inclosure. Let ϕ(x)

be ¬F 〈P 〉x, so Ω = {x : ¬F 〈P 〉x}; θ(X) is the vacuous condition. Ω is a
subset of A = {a0, ..., an}—indeed, a proper subset, since an is not in it. If
X ⊆ Ω then, since X is a proper subset of A, there must be a first member
of A not in it. Let this be δ(X). By definition, δ(X) /∈ X, Transcendence.
Now, either δ(X) = a0 (if X = φ), and so ¬F 〈P 〉 δ(X); or (if X 6= φ)
δ(X) comes immediately after something in X ⊆ Ω, so ¬F 〈P 〉 δ(X), by
tolerance. In either case, δ(X) ∈ Ω, Closure. The contradiction is that
¬F 〈P 〉 δ(Ω) ∧ ¬¬F 〈P 〉 δ(Ω)—or just ¬F 〈P 〉 δ(Ω) ∧ F 〈P 〉 δ(Ω).

8 The General Case

Of course, the situation repeats, generating new boundaries. Thus, the next
iteration gives us:

[− − ¬F 〈P 〉 − − − −]
[− − F 〈P 〉 − − − − −]

[− − ¬P − − − − −]

a0 ... ... ... ai ... ... ... ak ... ... ... an

[− − − P − − − − −]

[− − − T 〈P 〉 − − − − −]
[− − − ¬T 〈P 〉 − −]

Look below the as. We have just considered the division between P being
true and its not being true. We now have the divisions between T 〈P 〉 being
true, and its not being true, and the division between ¬T 〈P 〉 being true and
its not being true. The first of these is the same as that between P being
true and its not being true, since P and T 〈P 〉 are co-extensional. But the

9



second is new. Above the as we have the symmetrical situation concerning
F .

And so it goes on. We need to consider all predicates that can be obtained
by iteration. Generally, given the vague predicates Q, ¬Q, at the next level
we have T 〈Q〉, ¬T 〈Q〉, and T 〈¬Q〉 , ¬T 〈¬Q〉 (i.e., F 〈Q〉 , ¬F 〈Q〉). Thus,
the hierarchy of predicates looks as follow. To keep notation simple, I will
henceforth omit the angle brackets. (Thus, I will write F 〈T 〈P 〉〉 as FTP ,
etc.)

•
↙ ↘

P ¬P
↙ ↘

TP ¬TP
↙ ↘
TTP ¬TTP

...
...

↙ ↘
FTP ¬FTP

...
...

↙ ↘
FP ¬FP

↙ ↘
TFP ¬TFP

...
...

↙ ↘
FFP ¬FFP

...
...

By exactly analagous consideration, each pair in the family is vague, and
each gives rise to an inclosure contradiction.

9 A “Soritically Closed” Language

How do we know that all these contradictions can be accommodated in a uni-
form way? With the self-referential paradoxes and their extended versions,
we know this because we can construct a single semantically closed language,
which accommodates all the contradictions in one hit. Exactly the same is
true in this case. We can construct a “soritically closed” language. Specif-
ically, we take a language that has the truth-of predicate T , and a naming
device, 〈.〉. For definiteness, let us suppose that the language contains that
for arithmetic, and that the naming is obtained by Gödel coding. We sup-
pose, in addition, one vague predicate, P , and a sorites sequence (a0, ..., an).
Let this be 0, ..., n. Let σ be any string of ‘T ’s and ‘F ’s (including the empty
string), and let #(σ) be the number of ‘F ’s in σ. (The parity of this tells us,
in effect, whether we are doing a left-to-right sorites, or a right-to left sorites.
Even is the fist; odd is the second.)

Our theory comprises the S-schema, plus the following:

σPai ≡ σPai+1 (0 ≤ i < n)

σPa0,¬σPan when #(σ) is even
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σPan,¬σPa0 when #(σ) is odd

The theory is inconsistent. For every σ, the theory entails:∨
0≤i≤n

(σPai ∧ ¬σPai+1)

(The proof when σ is the empty sequence was already given; in the general
case, the argument is exactly the same.)

Moreover, the theory is non-trivial. We can construct an interpretation
which shows this, as follows. Start with a language without T . Take an
interpretation, I, which is standard with respect to the arithmetic machinery.
Let 0 < m < n. The extension of P is {0, ..,m}, and the anti-extension is
{m, .., n}.12 So, in the model, Pm∧¬Pm holds, as does every biconditional
Ph ≡ P (h + 1), for 0 ≤ h < n. We now construct a model of the S-schema
on top of I as in Priest (2002), 8.2. (The model constructed there is of
the T -schema, but this generalises to one for the S-schema in an obvious
fashion.) In this model, we have not just the S-schema, but its contraposed
form. Hence, every σα is logically equivalent to α or ¬α, and so all the
cases of the axioms where σ is non-empty collapse into the case where it is.
Moreover, in the construction of the model, it is only sentences involving ‘T ’
that change their value. So the truth values of all other sentences are as in
I. (In particular, then, any purely arithmetic sentence false in the standard
model is not provable in the theory.)

What we see, then, is that from a dialetheic perspective, higher order
vagueness is essentially the same as the extended paradoxes of self-reference,13

can be handled in exactly the same way, and is no more problematic.

10 Conclusion

Prima facie, sorites arguments and the paradoxes of self-reference are com-
pletely distinct. They are certainly distinct. But what I have tried to estab-
lish is that, at a fundamental level, they are the same. Both are inclosure
paradoxes, where the underlying form is given by the Inclosure Schema. The
two kinds of paradox must therefore have the same kind of solution. Given
that the correct solution to the paradoxes of self-reference is a dialetheic one,
then so must be a solution to the sorites paradoxes. I have discussed such a

12Strictly speaking, {x;x ≥ m}, since every natural number must be in either the
extension or the anti-extension of P . But what happens for numbers greater than n in
irrelevant for our example.

13This important observation is due to Mark Colyvan (2007).
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solution at length, and argued that, despite certain superficial differences, it
is also essentially the same.

The fact that one has a single family of paradoxes, and a uniform solution,
does not, of course, mean that various sub-families cannot have their own
specificities. Even within the paradoxes of self-reference, the semantic and
the set theoretic paradoxes have differences of vocabulary; more importantly,
diagonalisation may be achieved in various different ways (by employing lit-
eral diagonalisation, a least number operator, etc.) Thus, it is entirely pos-
sible for the sorites paradoxes to have their own specificities, which they do.
For example, tolerance plays a distinctive role, and “higher order vagueness”
must be accommodated. All this we have seen. But the specificities are su-
perficial, just as the specificities of the set theoretic and semantic paradoxes
are superficial when it comes understanding the paradoxes and framing an
appropriate solution. Such, at least, has been the import of this paper.
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