
logic, non-classical

The purpose of this entry is to survey those modern log-
ics that are often called “non-classical,” classical logic
being the theory of validity concerning truth functions
and first-order quantifiers likely to be found in introduc-
tory textbooks of formal logic at the end of the twentieth
century.

For the sake of uniformity I will give a model-
theoretic account of the logics. All of the logics also have
proof-theoretic characterizations, and in some cases (such
as linear logic) these characterizations are somewhat more
natural. I will not discuss combinatory logic, which is not
so much a non-classical logic as it is a way of expressing
inferences that may be deployed for both classical and
non-classical logics. I will use A, B, … for arbitrary sen-
tences; Ÿ, ⁄, ÿ, and r, for the standard conjunction, dis-
junction, negation, and conditional operators for
whichever logic is at issue. “Iff” means “if and only if.” For
references see the last section of this article.

extensions versus rivals

An important distinction is that between those non-
classical logics that take classical logic to be alright as far
as it goes, but to need extension by the addition of new
connectives, and those which take classical logic to be
incorrect, even for the connectives it employs. Call the
former extensions of classical logic, and the latter rivals.
Thus modal logics, as now usually conceived, are exten-
sions of classical logic. They agree with classical logic on
the extensional connectives (and quantifiers if these are
present) but augment them with modal operators. By
contrast, intuitionist and relevant logics are more plausi-
bly thought of as rivals. Thus A⁄ÿA is valid in classical
logic but not intuitionist logic, and Ar(BrA) is valid in
classical logic but not relevant logic.

The distinction must be handled with care however.
Modern modal logics can be formulated, not with the
modal operators, but with the strict conditional, ! (from
which modal operators can be defined), as primitive; and
A!(B!A) is not valid. From this perspective modal logic
is a rival to classical logic (which is the way it was origi-
nally intended). Similarly it is (arguably) possible to add
a negation operator, $, to relevant logics which behaves as
does classical negation. Classical logic is, then, just a part
of this logic, identifying the classical ÿA and ArB with
the relevant $A and $A ⁄ B, respectively. From this per-
spective, in a relevant logic, r and ÿ are operators addi-
tional to the classical ones, and relevant logic is an
extension of classical logic.

What these examples show is that whether or not
something is an extension or a rival of classical logic is
not a purely formal matter but a matter of how the logic
is taken to be applied to informal reasoning. If, in a modal
logic, one reads A! B as “if A then B” then the logic is a
rival of classical logic. If one reads ArB as “if A then B”
and A!B as “necessarily, if A then B,” it is an extension. If,
in a relevant logic, one reads ArB as “if A then B,” and ÿA
as “it is not the case that A,” the logic is a rival to classical
logic; if one reads $A ⁄ B as “if A then B” and $A as “it is
not the case A,” it is an extension. (The examples also
raise substantial philosophical issues. Thus both a rele-
vant logician and an intuitionist are liable to deny that $
is a connective with any determinate meaning.)

many-valued logics

A central feature of classical logic is its bivalence. Every
sentence is exclusively either true (1) or false (0). In
many-valued logics, normally thought of as rivals to clas-
sical logic, there are more than two semantic values.
Truth-functionality is, however, maintained; thus the
value of a compound formula is determined by the values
of its components. Some of the semantic values are desig-
nated, and a valid inference is one in which, whenever the
premises are designated, so is the conclusion.

A simple example of a many-valued logic is that in
which there are three truth values, 1, i, 0; and the truth
functions for the standard connectives may be depicted as
follows:

The only designated value is 1 (which is what the
asterisk indicates). This is the &ukaziewicz 3-valued logic,
&3. If the middle value of the table for r is changed from
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1 to i we get the Kleene 3-valued logic K3. The standard
interpretation for i in this logic is neither true nor false. If
in addition i is added as a designated value, we get the
paraconsistent logic LP. The standard interpretation for i
in this is both true and false.

&3 can be generalized to a logic, &n, with n values, for
any finite n, and even to one with infinitely many values.
Thus the continuum-valued &ukasiewicz logic, &¿, has as
semantic values all real numbers between 0 and 1 (inclu-
sive). Normally only 1 is designated. If we write the value
of A as n(A), n(A⁄B) and n(AŸB) are the maximum and
minimum of n(A) and n(B), respectively; n(ÿA)=1-n(A);
n(ArB)=1 if n(A)≤n(B) and n(ArB)=1-(n(A)-n(B)) oth-
erwise. Standardly the semantic values are thought of as
degrees of truth (so that 1 is completely true). Interpreted
in this way &¿ is one of a family of many-valued logics
called fuzzy logics.

modal logics

Another family of non-classical logics maintains biva-
lence, but rejects truth-functionality. Modal logics aug-
ment the connectives of classical logic with the operators
~ (it is necessarily the case) and ë (it is possibly the case).
The truth-values of ~A and ëA depend on more than just
the truth value of A.

Standard semantics for modal logics invoke a set of
(possible) worlds, augmented with a binary relation, R.
wRw' means, intuitively, that from the state of affairs as it
is at w, the state of affairs as it is at w' is possible. (In first-
order modal logics each world comes also with a domain
of quantification.) The extensional connectives are given
their usual truth conditions with respect to a world, but if
we write the value of A at world w as nw(A):

nw(~A)=1, iff for all w' such that wRw', nw'(A)=1

nw(ëA)=1, iff for some w' such that wRw', nw'(A)=1

Validity is defined in terms of truth preservation at
all worlds. (This is for normal modal logics. Non-normal
modal logics have also a class of non-normal worlds, at
which the truth conditions of the modal operators are
different.)

Different modal logics are obtained by putting con-
straints on R. If R is arbitrary we have the system K. If it
is reflexive (validating ~ArA), we have T; if transitivity is
also required (validating ~Ar~~A), we have S4; if sym-
metry is added (validating Ar~ëA), we have S5. (Alter-
natively, in this case, R may be universal: For all w and w',
wRw'.) If we have just the condition that every world is
related to some world or other (validating ~ArëA), we
have D.

The notion of possibility is highly ambiguous (logi-
cal, physical, epistemic, etc.). Arguably, different con-
straints on R are appropriate for different notions.

intensional logics

World semantics have turned out to be one of the most
versatile techniques in contemporary logic. Generally
speaking, logics that have world-semantics are called
intensional logics (and are normally thought of as exten-
sions of classical logic). There are many of these in addi-
tion to standard modal logics.

~ may be interpreted as “it is known that”, in which
context it is usually written as K and the logic is called
epistemic logic. (The most plausible epistemic logic is T.)
It may be interpreted as “it is believed that,” in which case
it is usually written as B, and the logic is called doxastic
logic. (Though even the logic K seems rather too strong
here, except as an idealization to logically omniscient
beings.) ~ may be interpreted as “it is obligatory to bring
it about that,” in which case it is written as O, and the
logic is called deontic logic. The standard deontic logic is
D.

One can also interpret ~ as “it is provable that.” The
best-known system in this regard is usually known as GL
and called provability logic. This logic imposes just two
constraints on the accessibility relation. One is transitiv-
ity; the other is that there are no infinite R-chains, that is,
no sequences of the form w0Rw1, w1Rw2, w2Rw3, … This
constraint verifies the principle ~(~ArA)r~A, but not
~ArA. The interest of this system lies in its close con-
nection with the way that a provability predicate, Prov,
works in standard systems of formal arithmetic. By
Gödel’s second incompleteness theorem, in such logics
one cannot prove Prov(·AÒ) r A (where ·AÒ is the
numeral for the gödel number of A); but Löb’s theorem
assures us that if we can prove Prov(·AÒ) r A we can
prove A, and so Prov(·AÒ). It is this idea that is captured
in the characteristic principle of GL.

Another possibility is to interpret ~ and ë as, respec-
tively, ‘it will always be the case that,’ and ‘it will be the
case at some time that.’ In this context the operators are
normally written as G and F, and the logic is called tense
logic. In the world-semantics for tense logics, worlds are
thought of as times, and the accessibility relation, R, is
interpreted as a temporal ordering. In these logics there
are also past-tense operators: H and P (“it has always been
the case that” and “it was the case at some time that,”
respectively). These are given the reverse truth condi-
tions. Thus for example:
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nw(HA)=1, iff for all w' such that w'Rw, nw'(A)=1

The past and future tense operators interact in character-
istic ways (e.g., ArHFA is logically valid). The basic tense
logic, Kt, is that obtained when R is arbitrary. As with
modal logics, stronger systems are obtained by adding
constraints on R, which can now represent the ideas that
time is dense, has no last moment, and so on.

Of course it is not necessary to have just one family
of intensional operators in a formal language: One can
have, for example, modal and tense operators together.
Each family will have its own accessibility relation, and
these may interact in appropriate ways. Systems of logic
with more than one family of modal operators are called
multi-modal. One of the most important multi-modal
logics is dynamic logic. In this there are operators of the
form [a] and ·aÒ, each with its own accessibility relation,
Ra. In the semantics of dynamic logic, the worlds are
thought of as states of affairs or of a computational
device. The as are thought of as (non-deterministic)
actions or programs, and wRaw' is interpreted to mean
that starting in state w and performing the action a (or
running the program a) can take one to the state w'. Thus
[a] A (·aÒA) holds at state w, just if performing a at w will
always (may sometimes) lead to a state in which A holds.
The actions themselves are closed under certain opera-
tions. In particular, if a and b are actions, so are a;b (per-
form a and then perform b); a»b (perform a or perform
b, non-deterministically); a* (perform a some finite num-
ber of times, non-deterministically). There is also an
operator, ? (“test whether”), which takes sentences into
programs. The corresponding accessibility relations are:
xRa;by iff for some z, xRaz and zRby; xRa»by iff xRay or
xRby; xRa*y iff for some x=x1, x2, …, xn=y, x0Rax1, x1Rax2,
…, xn-1Raxn; xRA?y iff (x=y and nx(A)=1). Because of the *
operator, dynamic logic can express the notion of fini-
tude in a certain sense. This gives it some of the expres-
sive strength of second-order logic.

conditional logics

Another family of logics of the intentional variety was
triggered by some apparent counter-examples to the fol-
lowing inferences:

ArB @ (AŸC)rB

ArB, BrC @ ArC

ArB @ ÿBrÿA

which are valid for the material conditional. (For exam-
ple: “If you strike this match it will light; hence if you
strike this match and it is under water it will light.”) Log-

ics of the conditional that invalidate such principles are
called conditional logics. Such logics add an intentional
conditional operator, >, to the language. In the semantics
there is an accessibility relation, RA, for every sentence, A
(or one, RX, for every proposition, that is, set of worlds,
X). Intuitively wRAw' iff w' is a world which A holds but
is, ceteris paribus, the same as w. The truth conditions for
> are:

nw(A>B)=1 iff for all w' such that wRAw', nw'(B)=1

The intuitive meaning of R motivates the following
constraints:

wRAw' then nw'(A)=1

if nw(A)=1,then wRAw

Stronger logics in the family are obtained by adding
further constraints to the accessibility relations. A stan-
dard way of specifying these is in terms of “similarity
spheres”—neighbourhoods of a world containing those
worlds that have a certain degree of similarity to it.

The natural way of taking a conditional logic is as a
rival to classical logic (giving a different account of the
conditional). Some philosophers, however, distinguish
between indicative conditionals and subjunctive/counter-
factual conditionals. They take the indicative conditional
to be the material conditional of classical logic, and > to
be the subjunctive conditional. Looked at this way condi-
tional logics can be thought of as extensions of classical
logic.

intuitionist logic

There are a number of other important non-classical log-
ics that, though not presented originally as intentional
logics, can be given world semantics. One of these is intu-
itionist logic. This logic arose out of a critique of Platon-
ism in the philosophy of mathematics. The idea is that
one cannot define truth in mathematics in terms of cor-
respondence with some objective realm, as in a tradi-
tional approach. Rather one has to define it in terms of
what can be proved, where a proof is something that one
can effectively recognize as such. Thus, semantically, one
has to replace standard truth-conditions with proof-
conditions, of the following kind:

A⁄B is provable when A is provable or B is provable.

ÿA is provable when it is provable that there is no
proof of A

$xA(x) is provable when we can effectively find an
object, n, such that A(n) is provable
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Note that in the case of negation we cannot say that
ÿA is provable when A is not provable: We have no effec-
tive way of recognizing what is not provable; similarly, in
the case of the existential quantifier, we cannot say that
$xA(x) is provable when there is some n such that A(n) is
provable: we may have no effective way of knowing
whether this obtains.

Proceeding in this way produces a logic that invali-
dates a number of the principles of inference that are
valid in classical logic. Notable examples are: A⁄ÿA,
ÿÿArA, ÿ"xA(x)r$xÿA(x). For the first of these, there
is no reason to suppose that for any A we can find a proof
of A or a proof that there is no proof of A. For the last, the
fact that we can show that there is no proof of "xA(x)
does not mean that we can effectively find an n such that
A(n) can be proved.

In the world-semantics for intuitionist logic, inter-
pretations have essentially the structure of an S4 inter-
pretation. The worlds are interpreted as states of
information (things proved), and the accessibility rela-
tion represents the acquisition of new proofs. We also
require that if nw(A)=1 and wRw', nw'(A)=1 (no informa-
tion is lost), and if x is in the domain of quantification of
w and wRw' then x is in the domain of quantification of
w' (no objects are undiscovered). Corresponding to the
provability conditions we have:

nw(A⁄B)=1 iff nw(A)=1 or nw(A)=1

nw(ÿA)=1 iff for all w' such that wRw', nw'(A)=0

nw($xA(x))=1 iff for all n in the domain of w,
nw(A(n))=1

Unsurprisingly, given the above semantics, there is a
translation of the language of intuitionism into quanti-
fied S4 that preserves validity.

Another sort of semantics for intuitionism takes
semantic values to be the open sets of some topology. If
the value of A is x, the value of ÿA is the interior of the
complement of x.

relevant logic

Another logic standardly thought of as a rival to classical
logic is relevant (or relevance) logic. This is motivated by
the apparent incorrectness of classical validities such as:
Ar(BrB), (AŸÿA)rB. A (propositional) relevant logic
in one in which if ArB is a logical truth A and B share a
propositional parameter. There are a number of different
kinds of relevant logic, but the most common has a
world-semantics. The semantics differs in two major
ways from the world semantics we have so far met.

First it adds to the possible worlds a class of logically
impossible worlds. (Though validity is still defined in
terms of truth-preservation over possible worlds.) In pos-
sible worlds the truth conditions of r are as for ! in S5:

nw(ArB)=1 iff for all w' (possible and impossible)
such that nw'(A)=1, nw'(B)=1

In impossible worlds the truth conditions are given
differently, in such a way that logical laws such as BrB
may fail at the world. This may be done in various ways,
but the most versatile technique employs a three-place
relation, S, on worlds. If w is impossible, we then have:

nw(ArB)=1 iff for all x,y such that Swxy, if nx(A)=1,
ny(B)=1

This clause can be taken to state the truth conditions
of r at all worlds, provided that we add the constraint
that, for possible w, Swxy iff x=y. With no other con-
straints on S, this gives the basic (positive) relevant logic,
B. Additional constraints on S give stronger logics in the
family. Typical constraints are:

$x(Sabx and Sxcd)fi$y(Sacy and Sbyd)

SabcfiSbac

Sabcfi$x(Sabx and Sxbc)

Adding all three gives the (positive) relevant logic, R.
Adding the first two gives RW, R minus Contraction
(Ar(ArB)@ArB). The intuitive meaning of S is, at the
time of this writing, philosophically moot.

The second novelty of the semantics is in its treat-
ment of negation. It is necessary to arrange for worlds
where AŸÿA may hold. This may be done in a couple of
ways. The first is to employ the Routley * operator. Each
world, w, comes with a “mate,” w* (subject to the con-
straint that w**=w, to give Double Negation). We then
have:

nw(ÿA)=1 iff nw*(A)=0

(If w=w*, this just delivers the classical truth conditions.)
Alternatively, we may move to a four-valued logic in
which the values at a world are true only, false only, both,
neither ({1}, {0}, {1,0}, Ø). We then have:

1�nw(ÿA) iff 0�nw(A)

0�nw(ÿA) iff 1�nw(A)

The semantics of relevant logic can be extended to
produce a (relevant) ceteris paribus conditional, >, of the
kind found in conditional logics, by adding the appropri-
ate binary accessibility relations.
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distribution-free logics

There are some logics in the family of relevant 
logics for which the principle of Distribution,
AŸ(B⁄C)@(AŸB)⁄(AŸC), fails. To achieve this the truth
conditions for disjunction have to be changed. In an
interpretation, let [A] be the set of worlds at which A
holds. Then the usual truth conditions for disjunction
can be written:

nw(A⁄B)=1 iff w�[A] »[B]

To invalidate Distribution, the semantics are augmented
by a closure operator, å, on sets of worlds, x, satisfying
the following conditions:

X�å(X)

åå(X)=åX

if X�Y then å(X)�å(Y)

The truth conditions of disjunction can now be given as:

nw(A⁄B)=1 iff w�å([A] »[B])

Changing the truth conditions for disjunction in RW in
this way (and using the Routley * for negation) gives lin-
ear logic (LL). LL is usually formulated with some extra
intentional connectives, especially an intentional con-
junction and disjunction. These connectives can be pres-
ent in standard relevant logics too. Intuitionist, relevant,
and linear logics all belong to the family of substructural
logics. Proof-theoretically, these logics can be obtained
from a sequent-calculus for classical logic by weakening
the structural rules (especially Weakening and Contrac-
tion).

Another logic in which distribution fails is quantum
logic. The thought here is that it may be true (verifiable)
of a particle that it has a position and one of a range of
momenta, but each disjunct attributing to it that position
and a particular momentum is false (unverifiable). The
states of a quantum system are canonically thought of as
members of a Hilbert space. In the world-semantics for
quantum logic, the space of worlds is taken to be such a
space, and sentences are assigned closed subsets of this.
[AŸB] =[A] «[B], [A⁄B] =å([A] »[B] ), where å(X) is
the smallest closed space containing X; and [ ÿA] =[A]z.
Xz is the space comprising all those states that are orthog-
onal to members of X. (It satisfies the conditions: X = Xzz,
if X�Y then Yz�Xz, and X«Xz=Ø.) In quantum logic
ArB can be defined in various ways. Perhaps the most
plausible is as ÿA⁄(AŸB). (The subspaces of a Hilbert
space also have the structure of a partial Boolean algebra.
Such an algebra is determined by a family of Boolean
algebras collapsed under a certain equivalence relation,

which is a congruence relation on the Boolean operators.
Partial Boolean algebras can be used to provide a slightly
different quantum logic.)

paraconsistent logics

Before we turn to quantifiers there is one further kind of
logic to be mentioned: paraconsistent logic. Paraconsistent
logic is motivated by the thought we would often seem to
have to reason sensibly from information, or about a sit-
uation, which is inconsistent. In such a case, the principle
A,ÿA@B (ex falso quodlibet sequitur, Explosion), which is
valid in classical logic, clearly makes a mess of things. A
paraconsistent logic is precisely one where this principle
fails.

There are many different families of paraconsistent
logics—as many as there are ways of breaking Explosion.
Indeed many of the techniques we have already met in
this article can be used to construct a paraconsistent
logic. The 3-valued logic LP is paraconsistent, as is the
&ukasiewicz continuum-valued logic, provided we take
the designated values to contain 0.5. The ways that nega-
tion is handled in relevant logic also produce paraconsis-
tent logics, as long as validity is defined over a class of
worlds in which A and ÿA may both hold. Another
approach (discussive logic) is to employ standard modal
logic and to take A to hold in an interpretation iff A holds
at some world of the interpretation. In this approach the
principle of Adjunction (A,B@ AŸB) will generally fail,
since A and B may each hold at a world, whilst AŸB may
not. Another approach (“positive plus”) is to take any
standard positive (negation free) logic, and add a non-
truth-functional negation—so that the values of A and
ÿA are assigned independently. In these logics, the prin-
ciple of Contraposition (A}B@ÿB}ÿA) will generally
fail. Yet another is to dualise intuitionist logic. In particu-
lar one can take semantic values to be the closed sets in
some topology. If the value of A is X, the value of ÿA is
the closure of the complement of X.

second-order quantification

We now turn to the issue of quantification. In classical
logic there are quantifiers " and $. These range over a
domain of objects, and "xA(x) [$xA(x)] holds if every
[some] object in the domain of quantification satisfies
A(x). All the propositional logics we have looked at may
be extended to first-order logics with such quantifiers.
Other non-classical logics may be obtained by adding to
these (or replacing these with) different kinds of quanti-
fiers.

LOGIC, NON-CLASSICAL

ENCYCLOPEDIA OF PHILOSOPHY
2 n d  e d i t i o n • 489

eophil_L  11/2/05  3:50 PM  Page 489



Perhaps the most notable of these is second-order
logic. In this there are bindable variables (X, Y, …) that
can stand in the place where a monadic first-order pred-
icate can stand and which range over sets of objects in the
first-order domain—canonically all of them. (There can
also be variables that range over the n-ary relations on
that domain, for each n, as well as variables that range
over n-place functions. The second-order extension of
classical logic is much stronger than the first-order ver-
sion. It can provide for a categorical axiomatization of
arithmetic and consequently is not itself axiomatizable.

Monadic second-order quantifiers can also be given
a rather different interpretation, as plural quantifiers. The
idea here is to interpret $X Xa not as “There is a set such
that a is a member of it,” but as “There are some things
such that a is one of them.” The proponents of plural
quantification argue that such quantification is not com-
mitted to the existence of sets.

other sorts of quantifiers

There are many other non-classical quantifiers. For
example one can have a binary quantifier of the form
Mx(A(x),B(x)), “most As are Bs.” This is true in a finite
domain if more than half the things satisfying A(x) satisfy
B(x). It is not reducible to a monadic quantifier plus a
propositional connective.

Another sort of quantifier is a cardinality quantifier.
The quantifier “there exist exactly n things such that” can
be defined in first-order logic with quantification and
identity in a standard way. The quantifier “there is a
countable number of things such that” (or its negation,
“there is an uncountable number of things such that”)
cannot be so defined—let alone the quantifier “there are
k things such that,” for an arbitrary cardinal, k. Such
quantifiers can be added, with the obvious semantics.
These quantifiers extend the expressive power of the lan-
guage towards that of second-order logic—and beyond.

Another kind of quantifier is the branching quanti-
fier. When, in first-order logic, we write:

"x1$y1"x2$y2A(x1,x2,y1,y2)

y2 is in the scope of x1, and so its value depends on that of
x1. To express non-dependence one would normally need
second-order quantification, thus:

$f1"x1$f2"x2A(x1,x2,f1(x1),f2(x2))

But we may express it equally by having the quantifiers
non-linearly ordered, thus:

As this would suggest, branching quantifiers have some-
thing of the power of second-order logic.

A quite different kind of quantifier is the substitu-
tional quantifier. For this there is a certain class of names
of the language, C. PxA(x) [SxA(x)] holds iff for every
[some] c�C, A(c) holds. This is not the same as standard
(objectual) quantification, since some objects in the
domain may have no name in C; but first-order substitu-
tional quantifiers validate the same quantificational infer-
ences as first-order objectual quantifiers. Note that the
notion of substitutional quantification makes perfectly
good sense for any syntactically well-defined class,
including predicates (so we can have second-order substi-
tutional quantification) or binary connectives (so that
Sx(AxB) can make perfectly good sense).

Finally in this category comes free quantifiers. It is
standard to interpret the domain of objects of quantifica-
tion (at a world) as comprising the objects that exist (at
that world). It is quite possible, however, to think of the
domain as containing a bunch of objects, some of which
exist, and some of which do not. Obviously this does not
change the formal properties of the quantifiers. But if one
thinks of the domain in this way one must obviously not
read $x as ‘there exists an x such that’; one has to read it
simply as ‘for some x’. Given this set-up, however, it makes
sense to have existentially loaded quantifiers, "E and $E,
such that "EA(x) [$EA(x)] holds (at a world) iff all [some]
of the existent objects (at the world) satisfy A(x). If there is
a monadic existence predicate, E, these quantifiers can be
defined in the obvious way, as (respectively): "x(ExrA(x))
and $x(ExŸA(x)). Clearly, existentially loaded quantifiers
will not satisfy some of the standard principles of quantifi-
cation, such as "ExA(x)rA(c), A(c)r$xEA(x) (since the
object denoted by ‘c’ may not exist). Some logics do not
have the existentially unloaded quantifiers, just the loaded
ones. These are usually called free logics.

non-monotonic logics

It remains to say a word about one other kind of logic
that is often categorized as non-classical. In all the logics
we have been considering so far:

if S@A then S»D@A

(where S and D are sets of formulas): Adding extra prem-
ises makes no difference. This is called monotonicity. Log-
ics in which this principle fails are called non-monotonic
logics. Non-monotonic inferences can be thought of as
inferences that are made with certain default assump-
tions. Thus I am told that something is a bird, and I infer
that it can fly. Since most birds fly this is a reasonable con-

A(x1, x2, y1, y2)
∀x1∃y1
∀x2∃y2
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clusion. If, however, I also learn that the bird weighs 20
kg. (and so is an emu or an ostrich), the conclusion is no
longer a reasonable one.

There are many kinds of non-monotonic logics,
depending on what kind of default assumption is imple-
mented, but there is a common structure that covers many
of them. Interpretations, I, of the language come with a
strict partial ordering, ô (often called a preference order-
ing). Intuitively, I1ôI2 means that the situation represented
by I1 is more normal (in whatever sense of normality is at
issue) than that represented by I2. (In particular cases it
may be reasonable to suppose that ô has additional prop-
erties.) I is a most normal model of S iff every B�S holds
in I, and there is no JôI for which this is true. A follows
from S iff A holds in every most normal model of S. As is
clear a most normal model of S is not guaranteed to be a
most normal model of S»D. Hence monotonicity will fail.
As might be expected there is a close connection between
non-monotonic logics and conditional logics, in which
the inference ArB@(AŸC)rB fails. Though non-monot-
onic logic has come to prominence in modern computa-
tional logic, it is just a novel and rigorous way of looking
at the very traditional notion of non-deductive (inductive,
ampliative) inference.

history, persons, references

We conclude this review of non-classical logics by putting
the investigations discussed above in their historical con-
text. References that may be consulted for further details
are also given at the end of each paragraph. For a general
introduction to propositional non-classical logics, see
Priest (2001). Haack (1996) is a discussion of some of the
philosophical issues raised by non-classical logics.

The first modern many-valued logics, the &n family,
were produced by Jan &ukasiewicz in the early 1920s.
(Emil Post also produced some many-valued logics about
the same time.) &ukasiewicz’s major philosophical con-
cern was Aristotle’s argument for fatalism. In this context
he suggested a many-valued analysis of modality. Logics of
the both/neither kind were developed somewhat later.
Canonical statements of K3 and LP were given (respec-
tively) by Stephen Kleene in the 1950s and Graham Priest
in the 1970s. &¿ was first published by &ukasiewicz and
Alfred Tarski in 1930. The intensive investigation of fuzzy
logics and their applications started in the 1970s. A
notable player in this area was Lotfi Zadeh. (Rescher 1969,
Urquhart 2001– , Hájek 1998, Yager and Zadeh 1992.)

Modern modal logics were created in an axiomatic
form by Clarence Irving Lewis in the 1920s. Lewis’s con-
cern was the paradoxes of the material conditional, and he

suggested the strict conditional as an improvement. Possi-
ble-world semantics for modal logics were produced by a
number of people in the 1960s, but principally Saul Kripke.
The semantics made possible the systematic investigation
of the rich family of modal logics. (Bull and Segerberg
2001– , Garson 2001– , Hughes and Cresswell 1996.)

The idea that the techniques of modal logics could be
applied to notions other than necessity and possibility
occurred to a number of people around the middle of the
twentieth century. Tense logics were created by Arthur
Prior, epistemic and doxastic logic were produced by
Jaakko Hintikka, and deontic logics by Henrik von
Wright. Investigations of provability logic were started in
the 1970s by George Boolos and others. Dynamic logic
was created by Vaughn Pratt and other logicians particu-
larly interested in computation, including David Harrel,
in the 1970s. (van Bentham 1988, Burgess 2001– ,
Thomason 2001– , Meyer 2001– , Åqvist 2001– , Boolos
1993, Harrel, Kozen, and Tiuryn 2001– .)

Conditional logics (with “sphere semantics”) were pro-
posed by David Lewis and Robert Stalnaker in the 1970s.
They were formulated as multi-modal logics by Brian Chel-
las and Krister Segerberg a few years later (Harper, Stal-
naker, and Pearce 1981, Nute and Cross 2001– ).

The intuitionist critique of classical mathematics was
started by Luitzen Egbertus Jan Brouwer in the early years
of the twentieth century. This generated a novel kind of
mathematics: intuitionist mathematics. Intuitionist logic,
as such, was formulated by Arend Heyting and Andrei
Kolmogorov in the 1920s. The intuitionist critique of
mathematical realism was extended to realism in general
by Michael Dummett in the 1970s (Dummett 1977, van
Dalen 2001– ).

Systems of relevant logic, in axiomatic form, came to
prominence in the 1960s because of the work of Alan
Anderson, Nuel Belnap and their students. World-seman-
tics were produced by a number of people in the 1970s,
but principally Richard Routley (later Sylvan) and Robert
Meyer. The semantics made possible the investigation of
the rich family of relevant logics. The four-valued seman-
tics for negation is due to J. Michael Dunn (Dunn and
Restall 2001– , Mares 2004).

Linear logic was produced by Jean-Yves Girard in the
1980s. Although many members of the class of sub-struc-
tural logics had been studied before, the fact that they
could be viewed in a uniform proof-theoretic way, was
not appreciated until the late 1980s. The formulation of
quantum logic in terms of Hilbert spaces is due, essen-
tially, to George Birkhoff and John von Neumann in the
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1930s. The use of an abstract closure operator to give the
semantics for non-distributive logics is due to Greg
Restall. (Troelstra 1992, Restall 2000, Paoli 2002, Chihara
and Giuntini 2001, Hughes 1989).

The first paraconsistent logic (discussive logic) was
published by Stanis&aw Jaskowski in 1948. Other non-
adjunctive logics were later developed in the 1970s by
Peter Schotch and Raymond Jennings. Newton da Costa
produced a number of different paraconsistent logics and
applications, starting with positive-plus logics in the
1960s. The paraconsistent aspects of relevant logic were
developed by Priest and Routley in the 1970s. (Priest,
Routley and Norman 1989, Priest 2001, Carnielli et al.
2001, Mortensen 1995).

Second-order quantification goes back to the origins
of classical logic in the work of Gottlob Frege and
Bertrand Russell. Its unaxiomatizability put it somewhat
out of fashion for a number of years, but it made a strong
come-back in the last years of the twentieth century. The
notion of plural quantification was made popular by
George Boolos in the 1980s. (Shapiro 1991, 2001–; Boo-
los 1984).

Quantifier phrases other than “some A” and “all A”
are pervasive in natural language; and since Frege pro-
vided an analysis of the quantifier many different kinds
have been investigated by linguists and logicians. Branch-
ing quantifiers were proposed by Jaakko Hintikka in the
1970s. Substitutional quantification came to prominence
in the 1960s, put there particularly in connection with
quantification into the scope of modal operators by Ruth
Barcan Marcus. It was treated with suspicion for a long
time, but was eventually given a clean bill of health by
Kripke. Free logics were first proposed in the 1960s, by
Karel Lambert and others (van der Does and van Eijck
1996, Barwise 1979, Kripke 1976, Bencivenga 2001– ).

Non-monotonic logics started to appear in the
logic/computer-science literature in the 1970s. There are
many kinds. The fact that many of them could be seen as
logics with normality orderings started to become clear in
the 1980s (Shoham, 1988; Crocco, Fariñas del Cerro, and
Herzig 1995; Brewka, Dix, and Konolige, 1997).

See also Aristotle; Brouwer, Luitzen Egbertus Jan; Combi-
natory Logic; Dummett, Michael Anthony Eardley;
First-Order Logic; Frege, Gottlob; Fuzzy Logic; Gödel’s
Incompleteness Theorems; Hintikka, Jaako; Inten-
sional Logic; Intuitionism and Intuitionistic Logic;
Kripke, Saul; Lewis, Clarence Irving; Lewis, David;
&ukasiewicz, Jan; Many-Valued Logics; Modal Logic;
Neumann, John von; Non-Monotonic Logic; Platon-

ism and the Platonic Tradition; Prior, Arthur Norman;
Provability Logic; Quantifiers in Natural Language;
Quantum Logic and Probability; Russell, Bertrand
Arthur William; Second-Order Logic; Semantics;
Tarski, Alfred; Wright, Georg Henrik von.
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Graham Priest (2005)

logic, symbolic
See Logic, History of

logic, traditional

In logic, as in other fields, whenever there have been spec-
tacular changes and advances, the logic that was current
in the preceding period has been described as “old” or
“traditional,” and that embodying the new material has
been called “new” or “modern.” The Stoics described
themselves as “moderns” and the Aristotelians as devotees
of the “old” logic, in the later Middle Ages the more
adventurous writers were called moderni, and since the
latter part of the nineteenth century the immensely

expanded logic that has developed along more or less
mathematical lines (“mathematical logic,” “symbolic
logic,” “logistics”) has been contrasted with the “tradi-
tional” logic inherited from the sixteenth and seventeenth
centuries. In every case the logic termed “old” or “tradi-
tional” has been essentially Aristotelian, but with a certain
concentration on the central portion of the Aristotelian
corpus, the theory of categorical syllogism—the logic of
Aristotle himself having been rather less circumscribed
than that of the “tradition,” especially of the sixteenth to
the nineteenth century.

the logic of terms

To begin with the categorical syllogism, an inference,
argument, or syllogism (traditionally, all arguments are
assumed to be syllogistic) is a sequence of propositions
(premises followed by a conclusion), such as “All animals
are mortal; all men are animals; therefore, all men are
mortal.” Propositions, in turn, are built up from terms—
for example, “animals,” “mortals,” “men.” The traditional
order of treatment, therefore, begins with the study of
terms (or, in writers with a psychological or epistemolog-
ical bias, ideas) and goes on to the study of propositions
(or judgments), concluding with that of syllogisms (or
inferences).

The terms from which the propositions principally
studied in the traditional logic are built up are common
nouns (termini communes), such as “man” and “horse,”
although some attention is also paid to singular terms,
such as “Socrates,” “this man,” and “the man next door.”
Much of the traditional theory is devoted to the arrange-
ment of common nouns in an order of comprehensive-
ness, and here a distinction is made between two aspects
of their functioning—their “extension” (as the logicians
of Port-Royal called it) or “denotation” (John Stuart Mill)
and their “intension” (Sir William Hamilton), “compre-
hension” (Port-Royalists), or “connotation” (Mill). The
extension or denotation of a common noun is the set of
individuals to which it applies, its intension or connota-
tion the set of attributes that an individual must possess
for the common noun to be applicable to it. Thus, the
connotation of the term man consists of the attributes of
being an animal, being rational, and perhaps possessing a
certain bodily form; its denotation consists of all objects
that possess these attributes.

Broadly, the connotation of a term is its meaning, the
denotation its application. The analysis of the meaning of
a term is described as definition, and the breaking up of the
set of objects to which it applies into subsets is described as
division. The subsets of the set of individuals to which a
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