
CRA.AM PR,ES  M i n i m a l l y  I n c o n s i s t e n t  L P  

Abstract.  The paper explains how a paraconsistent logician can appropriate all clas- 
sical reasoning. This is to take consistency as a default assumption, and hence to work 
within those models of the theory at hand which are minimally inconsistent. The paper 
spells out the formal application of this strategy to one paraeonsistent logic, first-order 

LP. (See, Ch. 5 of: G. Priest, In Contradiction, Nijhoff, 1987.) The result is a str,)ng 
non-monotonic paraconsistent logic agreeing with classical logic h~ consistent situations. 
It is shown that the logical closure of a theory under this logic is trivial only ff its closure 

raider LP is trivial. 

1. Introduction: the Classical Recapture - - R e l e v a n t  Logic 

Intuit ionism it a revisionist philosophy. It sees a good part of the reasomng 
of classical mathematics ,  particularly that concerning infinite totalities, as 
quite fallacious. It has therefore wished to debunk it. The programme of 
paraconsistent  logic has never been revisionist in the same sense. By and 
large, it has accepted that the reasoning of classical mathematics is correct. 
What  it has wished to reject is the excrescence ex contradictione quodibet, 
which does not appear to be an integral part of classical reasoning, but  
merely leads to trouble when reasoning ventures into the transconsistent. 

Since the early days of paraconsistent logic it has, however,  been clear 
that  the reject of ex contradictione is not possible without the rejection of 
other things which appear to be much more integral to classical reasonh~g. 
Crucially, the disjunctive syllogism is a casualty in most paraconsistent log- 
ics. The problem is therefore posed as to how to account for the apparently 
acceptable but  invalid classical reasoning. 

There are at least two strategies for trying to solve the problem. 1 The 
first is to note that  the most crucial failures of the disjunctive syllogism ap- 
pear to be those where the material  conditional is at tempting to play the 
role of a genuine conditional. One may therefore at tempt to reconstruct the 
informal reasoning of classical mathematics (and similar areas) by producing 
a new account of the conditional to be grafted on to an underlying exten- 
sional paraconsistent  logic (without ruining its paraconsistent properties) 2, 
and using this in the reconstruction. 

*These are spelled out clearly ill [4], Section IV. 
2E. g., as in [5], Ch. 6, or [8], Ch. 3, 'Systems of Paraconsistent Logic'. 
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This is the route that standard relevant paraconsistent logic has taken. 
Several logicians (Brady, Meyer, Mortensen, Priest, Routley, et al.) have 
a t tempted to reconstruct various fragments of classical reasoning in this way. 
While the results are not definitive, they are not terribly encouraging. There 
appear  to be classical arguments which defy reconstruction in this way. The 
most ambitious project in this direction was Meyer's a t tempt  to reconstruct 
the reasoning of classical number theory in the relevant theory R # . This 
project has ended in failure. 3 And this is so where the tmderlying logic, R, 
is a very strong one, much stronger than is suitable for many paraconsistent 
purposes. Thus, though the aim of furnishing paraconsistent logic with a 
correct account of the conditional is a highly important  - -  indeed, essential 

- -  enterprise, it would now appear that the aim of reconstructing sensible 
classical reasoning in this way is not likely to be realised. 

2. T h e  C l a s s i c a l  R e c a p t u r e  - - L i m i t i n g  t h e  D o m a i n  

The other way of attempting to recapture sensible classical reasoning stems 
from the observation that counter-examples to inferences such as the dis- 
junctive syllogism occur only in the transconsistent. Hence provided we stay 
within the domain of the consistent, which classical reasoning of course does 
(by and large), classical logic is perfectly acceptable. (Similarly, for the in- 
tuitionism, classical logic is perfectly acceptable provided one stays within 
the domain of the decidable.) 

Compared with the first strategy for appropriating classical reasoning, 
th is  strategy has little that can go wrong: nothing has to be reconstructed; 
the theory just legitimizes classical reasoning as it stands. The problems for 
this strategy are rather different. The first is to understand the exact import 
of the claim that 'provided we stay within the domain of the consistent, 
classical logic is perfectly acceptable'. This is not as easy as it appears, but I 
have discussed the mat ter  at length elsewhere 4 , so I will not take up the issue 
again. I merely report that an important upshot of that discussion is that 
we are justified in assuming consistency until and tmless shown otherwise. 

The second problem for this approach is to see whether it can be worked 
into an interesting formal theory of reasoning. It can; and that is the main 
topic of the paperP The crucial insight here is due to Batens6; and is that 
given some information, from which we have to reason, we can cash out the 

3See [3]. 
~[5], Ch. 8 ~ld [7]. 
~A somewhat different way is given in [5], Ch. 8; but this now strikes me m~_ contrived 

in comparison with the present approach. 
~ ~ a  [2]. 
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idea that the situation is no more inconsistent than we are forced to assume 
by restricting ourselves to those models of the information which are, in 
some sense, as consistent as possible, given the information; or as we will 
say, minimally inconsistent. 

How, precisely, one is to tmderstand minimal inconsistency, may de- 
pend on the underlying paraconsistent logic. For reasons I have explained 
elsewhere, 7 my preferred extensional paraconsistent logic is the system LP. 
Hence, I shall work with this (though dearly the techniques are more gen- 
erally applicable). First, I will give a summary of LP semantics; then I will 
explain minimally inconsistent LP, LPm. I will then establish a number of 
its pleasing properties. 

3. S e m a n t i c s  f o r  L P  

LP semantics are for a first-order language with connectives -~ and A, and 
quantifier V. 3 and V are defined in the usual way. There are constants and 
predicates, including the identity predicate. I will use lower case greeks from 
a on as schematic letters for formulas of the language, lower case romans 
from p on as schematic letters for atomic formulas, and upper case greeks 
for sets of formulas. 

We will assume that there are no propositional parameters or function 
symbols in the language. This is largely a mat ter  of simplicity. But also, in 
the present context, they are an irrelevancy. It is well known that they do 
not extend the expressive power of classical first-order logic. Hence, if the 
use of this logic can be justified, so is their use. 

An interpretation,  ~2t, for the language is a pair (D, I) ,  where D is the non- 
empty dommn o f  quantification; I is a function which maps each individual 
constant, c, into D and each n-place predicate, P, into a pair (I + (P), I - ( P ) ) ,  
where I+(P) U I - ( P )  = D '~. We also require that I + ( = )  = {(x ,x) ;x  E D}. 
(But note that  since I + (=)  mid I - ( = )  need not be disjoint, things of the form 
(z,x)  may be in I - ( = )  too.) The language of 92 is the language augmented 
by a set of individual constants, one for each member of D. For simplicity 
we take the set to be D itself, and specify that for all d E D I(d) = d. 
(Thus, in the language of 91, every member of the domain of 91 has at least 
one name. ) 

Every formula in the language of 92, c~, is now assigned a truth value, 

u(~), in the set {{1}, {0}, {1, 0}} by the following recursive clauses. 

1 E u(PCl . . .an) r (I(Cl)...I(cn)> E I+(P) 

~[4] = d  [5], Chs. 4, 5. 
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0 E z'(Pcl . . .c~) ~ ( (q ) . . . I ( cn ) )  E I - ( P )  

1 e ~ ( ~ )  ~, o e ~(~) 

0 e ~ ( ~ )  r 1 e ~(~) 

1 E ~,(a A fl) ~ 1 E z,(a) and i E L,(fl) 
0 e ~(~ A ~) ~ 0 e . ( ~ )  or 0 C ~(~) 

I E z,(gxa) r for all d E D 1 E ~,(a(aa/d)) 
0 E ~ ( g , a )  ~ some d E D 0 E ~(a(m/d)) 

where a(x/d) denotes a with all free occurrences of 'a:' replaced 'd'. 

Let 91 = (D, I) be an interpretation, then: 

92 is a model for a (92~ a) iff 1 E ~(a) 

92 is a model for E (92 ~ E) iff for all fl E E 91 ~ fl 

a is an LP consequence of E (E ~ c~) iff 

every model of E is a model of or. 

For propositional LP, an interpretation, ~,, simply assigns each proposi- 
tional parameter  a t ruth  value in {{1}, {0}.{1,0}}. The rest is similar. 

I will not pause long to discuss the logic LP, but I note that any stan- 
dard classical interpretation is isomorphic to an LP interpretation in which 
all atomic formulas (and so all formulas) take the value {0} or {1}. Conse- 
quently I will call such LP interpretations classical interpretations. It follows 
that every LP consequence of a set of formulas is also a classical consequence. 
What  is not so obvious (but is true) is that the set of logical truths of LP is 
exactly the set of logical truths of first-order logic (with identity), s 

One fitrther property of LP will be useful in what follows. So I will state 
it now. 

LEMMA. Let 92 be any interpretation. If for every atomic formula, p, in 
the language of 92 ~(p) = {1,0}, then for every formula, a, v(a)  = {1,0}. 

PROOF. The proof is by a simple recursion over the structure of formulas. 
Details are omitted. 

SFurther details and proof can be found in [5], Ch. 5. 
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4. S e m a n t i c s  f o r  L P m  

Giving a precise defiuition of minimal inconsistency reqtfires us to fmd some 
measure of degree of inconsistency, or, what comes to the same thing, a way 
of ordering interpretations with respect to their inconsistency. One might 
a t tempt  this in a number of ways, but the one that appears to give the best 
results is as follows.  9 If a is a formula, let a! be aA ~a .  Note that, given any 
interpretation, 1 e v(a!) iff v(a) = {1,0}. If 2t = (D, I)  is an interpretation, 
define the inconsistent part  of 2l, 92[, to be the set of atomic facts with value 

{1,0} in 92, i.e.: 

9~ = {p; For some P, and d l . . .  d~, E D, p = Pdl. . .  dn and 1 E v(p!)}. 

Note that  this is a (in general, proper) subset of the set of true contradictory 
atomic formulas. (In the propositional case 92! is just the set of propositional 
parameters  taking the value {1,0}.) 92! is art appropriate measure of the 
inconsistency of 92. If 92 is classical then 92! is dearly 0, which is minimM. 
If every atomic formula (and so every formula) is inconsistent then 2[[ is 
maximal (relative to the domain). 

We can now define a consistency ordering thus. Let 921 = (D1,I1} and 

922 = ( D 2 , h ) :  
2{1 < 2h iff 921! C 92.~! and D1 = D2. 

Here C denotes strict inclusion. As may easily be checked, < is a strict 
partial order. The reason for the second clause in the definiens may not be 
immediately apparent.  (In the propositional case, the first clause on its own 
is quite sufficient.) I will return to this in a moment. 2ll _< 929 is defined in 

the obvious way as: 921 < 929 or 2ll = 922. 
We now define: 

9.1 is a minimally inconsistent (mi) model of E (92 ~ E) 
iff 92 ~ E and if 92~ < 92 then 9.1' ~ E. 

a is a mi consequence of E (E ~,~ a) 
iff every mi model of E is a model of a. 

Notice that  if the second clause in the definition of < were not present, 
minimising inconsistency would require making the domain as small as pos- 
sible, which would give quite unintended results. For example, let E = 
{Vz(Px!)}; if we omitted the second clause from the definiens then any mi 

9For full discussion, see [6]. 
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model, 92, of E would have a signle-element domain (or we could make ~{~ 
smaller by decreasing the size of the domain). Hence we would have, e.g., 
E ~m VxQx v yx-~Qx, quite counter-intuitively. 

5. Propert ies  of LPm 

The first thing to observe about LPm is that it is non-monotonic. For 
example, let II be {p,--p V q}. Then H ~m q, since the mi models of H are 
just the classical models. But II t_J {p !} ~m q, since there is a mi model of 
the premises where p has the value {1,0} and q has the value {0}. (Note, 
however, that if r is a distinct atomic formula H U {r!} ~m q, since in mi 
models of the premises, only r takes the value {1,0}.) In effect LPm is a 
logic which implements the defanlt assumption of consistency. 

To state some more general properties of LPm, we need a little notation. 
Let E CL, ~LP and ~]m be the set of classical, LP and LPm consequences of 

E. Then: 

FACT 1. •LP C_ ~]m C E CL , since every classical model of E is a mi 

model, and every mi model is an LP model. 

FACT 2. In general, the inclusions in Fact I are proper, since II ~ q, 

but II ~,~ q (where II is as above); and {p!} )gin q, but q is a classical con- 

sequence of p!. 

FACT 3. If  E is classically consistent E TM = E CL, since if E is classically 

consistent its mi models just are its classical models. 

Hence LPm is a more generous notion of consequence then LP, which 
allows for classical inferences such as the disjunctive syllogism provided in- 
consistency does not "get in the way", and, in particular, is identical with 
classical logic in consistent situations. It thus gives a precise account of how 
it is that classical inferences are acceptable, paraconsisently, in consistent 
situations. 

6. R e a s s u r a n c e :  t h e  P r o p o s i t i o n a l  C a s e  

I have noted that LPm is a more generous inference engine than LP. The 
next  question is 'how much more generous?' Can we, for example, prove 
more contradictions using LPm than using LP? The answer to this is 'In 
general, yes'. To see this, just note that {p !, q! V r} ~,,~ (p A r)!. For in any 
mi model of the premises r must be true. Hence p A r must be true. But 



Minimally Inconsistent LP 327 

since p must be false p a r  must ~so be false. However, {p!,q!Vr} ~ (pAr)!,  
as a simple counter-model demonstrates. 

This raises the possibility that E TM may collapse into triviality when ~LP 
does not. This would obviously be tmfortunate since it would show that 
there are perfectly sensible (non-trivial) contexts where LPm could not be 
used. Its theoretical legitimacy would therefore have to be restricted, just  as 
that  of classical logic is. It would be very reassuring, therefore, if whenever 
~LP is non-trivial so is E " .  Let us therefore call this property Reassurance. 

Reassurance is not to be taken lightly. For example, suppose we ang- 
ment LP with propositional quantifiers and a conditional connective, -% 
satisfying (at least) modus ponens. Let E = {3p(p!)} U {pi! -+ p,:+l!; i a 
natural  number} (where the natural  numbers index the set of propositional 
variables). E LP is non-trivial; for example, E ~ P0- But E has no mi model. 
If 92 is a model  of E then 92! must be non-empty. Let n be the least rn such 
that Pm is inconsistent. Then 2i', which is exactly the same except that P,+I  
is the least m, is a less inconsistent model. Hence (vacuously) E "~ is trivial. 

It is, therefore, a welcome result that LP satisfies Reassurance (with one 
possible and not terribly important  qualification). For propositional LP, Re- 
assurance was proved where E is finite in Priest [1988]. The propositional 
case where E is infinite follows from the following lemma, whose proof is due 
to Fangzhen Lin (in conversation): 

LIN'S LEMMA. 
such that ~ < ~,. 

If ~ is a model of  E then there is a mi model of E, ~l 

For suppose that  E is non-triviah Then there must be a • and an a such 
that ~, ~ E and ~, ~ a. Hence there must be a propositional parameter,  p, 

such that ~ ~ p!, by the lemma of Section 3. By Lin's Lemma, there is a J 
such that ~ is a mi model of E and ~ ~ p]. Hence E TM is non-trivial. 

The proof  of Lin's Lemma goes as follows: 

PROOF OF LIN'S LEMMA. In LP, every formula is logically equivalent 
to one in disjunctive normal form. Hence, without lose of generality we (:an 
assume that the members of E are of the form •  V • V. . .  V ip,~, where 
• is either -~ or is nothing. 

Consider the set S = {u';~,' < u and u ~ ~ E}. S is partially ordered by 
<. Let C be any chain in this ordering. We show that C is bounded below. 
If follows by Zorn's Lemma that C has a minimal element. 

If C is finite, we are home; so suppose it is infinite. Let C! = N{#!; # E 
C}. Define a subset, E ~, of E as follows: 
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a E E  r i f f a E E , a i s  •  

If a E E ~ then for some ~ in C ~, ~ a and the value of each propositional 
pa ramete r  in g is classical, since C is a chain. Hence a has a classical model. 

Similarly, if E" is a finite subset of E ~, E" has a classical model. By the 
classical Compactness Theorem E ~ has a classical model, #. 

Define an LP interpretation #~ as follows: 

{1,0} i f p E C !  
#' (P) = #(p) otherwise. 

Clearly, #/ < v~ for a l l y  r E C. It remains to show that #~ ~ E. I f a  C E ~ 
then there is no propositional parameter in C! which occurs in a. Hence 
#~ ~ a since # ~ a. If, on the other hand, a E E -  E ~ then there is a 
propositional parameter,  p, in C! which occurs in a. Hence #~ ~ a. 

7. R e a s s u r a n c e :  t h e  F i r s t  O r d e r  C a s e  

For first-order LP, the proof of Reassurance is slightly more complicated, 
and assumes that the number of predicates in the language is finite. (This 
is the qualification I alluded to above. The result in the completely general 
case is still open.) It depends on two more lemmas. 

LEMMA 1. Let 92 a finite interpretation such that 92 ~ E. Then there is 
a 921 such that 91~ ~_ 92 and 921 ~m E. 

PROOF. Since there are a finite number of predicates in the language 
and the domain of 92is finite 91! is finite. Thus, {92';91~ _< 91and 91r ~ E} is 
a finite set partially ordered by <. Hence there is a minimal member.  

Note that this is the first-order Knalogue of Lin's Lemma, but restricted 
to the finite case. Its generalisation is still open (though I conjecture that it 
is true). If it could be proved, Reassurance in general would follows in the 
way that it does in the propositional case. 

To state the next lemma we need a definition. Let 92 = (D, I}  be an 
interpretation. Let ~ be an equivalence relation on D, and if d E D, let 
[a~ be the equivalence class of d under ~. Let 91~ = (D "z, I ~ } be defined as 
follows. D ~ = {[d];d E D}. For every constant, c, I~(C) = [I(c)], and if 
al . . . a ~  E D~: 



Minimally Inconsistent LP 329 

<al . . .an) E I~+(P) i~ ~1  E al . . .xn C an,(Xl ...Xn) ~ I+(P) 
<a~ . . .  <~> e •  ~r 3~i e a~ . . . ~  e <,,<~ . . . ~>  e Z- (P) .  

It is easy to check that ( I ~ + ( = ) , I ~ - ( = ) >  satisfies the appropriate condi- 
tions. Hence the interpretation is well defined. In effect, the new interpre- 
tation identifies everything in an equivalence class, producing a composite 
individual with all the properties of the individuals of which it is composed. 
I note in passing that  if there were function symbols in the language, there 
would be no natural  way of defining their interpretation in ~~. For ex- 
ample, if f is a 1-place function symbol, one cannot define I~(f)[a~ in the 
obvious way as [I(f)(d)] since there is no guarantee that if [d] = [e] then 
[I(f)(d)] = [I(f)(e)] .  To that extent, the assumption that there are no func- 
tion symbols in the language is necessary for the following proofs. 

LEMMA 2 (the Collapsing Lemma). For every formula a, in the language 
of ~ ~~(~) 2 ~(~). 

PROOF. The proof is by recursion on the structure of a. I will give 
only the t ru th  cases. The falsity cases are similar. For atomic sentences the 
argument is as follows: 

1 E v(Pcl . . ,  c~) (• z(c..)) e F(P)  
3Xl E [/(Cl)] . . .xn  E [/(cn)](xl . . .an)  E I+ (P)  

( [ . / ( E l ) ]  , , . [~ ' (Cn) ]}  ~ . / , , ~ - t - ( p )  

(• • e • 
1 ~ v ~ ( P c ~  . . .  c~) .  

The recursion case for A is as follows (that for ~ is similar): 

1 E ~(a A 3) :a 1 E v(a) and 1 E v(3) 

1 ~ ~,~ (~) and 1 e , ~  (3) 

1 e v~(aA3).  

The case for Y is as follows: 

e ~ ( w ~ )  ~ i ~ . (~(~/d)) for ~I e ~ D 
i c ~~ (4~/d))  for ~U [4 ~ D~ 

I e v ~ (Vxa). 

We can now prove ]{eass~ance. 
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PROOF. Suppose that E LP is non-trivial. Then for some ct E J~LP ol. 

Hence, there is a 9 2 =  ( D , I  / snch that 9A~ E and 92~ a. By the Lemma 
of Section 3, there is some predicate P and d l . . .  d~. E D such that 92 
Pdl  . . .  d~!. Define the equivalence relation ~, on D as follows: 

x ~ y i f f x  = y = dl or . . . o r  x = y = d,~ or x ,y  r {dl . . .d~}.  

In effect, ~ leaves d l . . .  d~ alone, but identifies all other members of D. 
Clearly 92~ is finite. Moreover, by the Collapsing Lemma 92~ ~ E. Further,  
it is obvious that 92~ ~ P d l . . .  d,~!. By Lemma 1, there is a 92~ < 92~ such 
that 92~ ~ E, and since 92~ < 92~, 92~ ~ P d l . . .  d~!. This is not quite what  
we need to show, since this sentence belongs to the language of 92, and not 
the original language. But it follows that 92~ ~ YXl . . .Vxn(Px l  . . .  $n!), a 
formula which is in the original language. Hence E TM is non-trivial. 

8. C o n c l u s i o n  

The Collapsing Lemma, on which the above proof of Reassurance depends, 
is interesting in its own right. It may, initially, be rather surprising. After 
all, we can, given any model of a set of formulas, produce a model of any 
smaller cardinality simply by choosing an equivalence relation that identifies 
the appropriate number of objects. And this is true even though the set may 
contain formulas which appear to constrain cardinahty, e.g., 3x3y ~ ~ y. 
The reason why they do not do so in a paraconsistent context is, of course, 
that  there is no guarantee that their negations are not also true. 

The Reassurance Theorem provides the final piece of evidence that LPm 
provides a good theoretical account of how classical reasoning is possible in 
consistent domains, and, in a constrained way, in the transconsistent too. 
The next job is to look at the mi consequence of some interesting inconsistent 
theories, such as Naive Set Theory; but that is a whole new subject. 
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