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Abstract Curry’s paradox is well known. The original version employed a con-
ditional connective, and is not forthcoming if the conditional does not satisfy
contraction. A newer version uses a validity predicate, instead of a conditional, and is
not forthcoming if validity does not satisfy structural contraction. But there is a vari-
ation of the paradox which uses “external validity” (that is, essentially, preservation
of theoremhood). And since external validity contracts, one might expect the appro-
priate version of the Curry paradox to be inescapable. In this paper we show that this
is not the case. We consider two ways of formalising the notion of external validity,
and show that in both of these the paradox is not forthcoming without the appropriate
forms of contraction.

Keywords Curry paradox · Internal validity · External validity · Internal
consequence relations · External consequence relations · Contraction · Higher-level
sequent calculi

1 Introduction

The standard Curry’s paradox is well known, cf. [2, 6]. It involves a sentence, σ ,
of the form T (σ) → A, for an arbitrary A. (We use ‘T ’ s a truth predicate, and
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overlining as a name-forming device.) Assuming the T -schema, the naively correct
principle about truth, one infers the arbitrary A. Call this the ‘c-Curry’. Those who
are wont to endorse the T -schema usually fault the paradox-argument by rejecting a
principle of inference concerning the conditional, Contraction: A → (A → B) �
A → B .1

Less well known is a version of the paradox concerning, not truth, but validity.
Call this the ‘v-Curry’. This involves a sentence, π , of the form V al(π, A). Here
‘V al(x, y)’ is a validity predicate. Assuming the naively correct principle about
validity, namely that A � B iff � V al(A, B) one infers the arbitrary A. Those who
are wont to endorse this natural principle about validity usually fault the paradoxi-
cal argument, by analogy with the truth-Curry, by rejecting the structural principle of
Contraction, that is, in sequent calculus form:

X, A, A ⇒ B � X, A ⇒ B

(where ⇒ is the sequent operator). (See, e.g., [10].)
The notion of validity here, ‘V al’, is what one may call internal, recording the fact

that the conclusion follows from the assumption of the premises, given the rules in
operation. But there is a different, and perfectly legitimate, notion of validity, which
we may call external. An inference is valid in this sense if the logical validity (the-
oremhood) of the conclusion follows from that of the premises, given the rules in
operation. That is, given that � A and the rules in play, we can infer that � B . This
differentiation parallels the distinction between the internal and the external con-
sequence relation defined over a given sequent calculus, see [1]: B is an internal
consequence of A1, . . . , An iff the sequent A1, . . . , An ⇒ B is provable in the sys-
tem; B is an external consequence of A1, . . . , An iff the sequent ⇒ B is provable in
the sequent system that results from the given one by adding ⇒ A1, . . . , ⇒ An as
axioms (and cut as a primitive rule).2 Whereas for internal consequence the structural
rule of contraction may or may not be assumed, external validity appears to contract:
theorems may be reused an arbitrary number of times, even if assumptions cannot.
It might well be thought, then, that the validity Curry paradox will reappear for this
notion of validity.

Is this, in fact, the case? What makes the issue hard is that to analyse the supposed
paradox one needs to be very clear about how to formulate and reason about validity.
In this paper we will give two natural approaches, and show that in each of them
the Curry paradox for external validity fails to be forthcoming, if contraction, in the
appropriate sense, is not assumed.

We will first recall the connective Curry paradox (Section 2) and then consider the
v-Curry paradox as presented in natural deduction style by Beall and Murzi [3] and
in sequent style by Mares and Paoli [9] (Section 3). We will then proceed to the two
approaches to regimenting the notion of validity. In Section 4 we will present von
Kutschera’s higher-level sequent system M∞. The next two sections then use this to

1Or, assuming that → detaches and satisfies the Deduction Theorem, the contraction axiom schema (Law
of Absorption): (A → (A → B)) → (A → B).
2External validity is sometimes called ‘admissibility’. See, e.g., [4].
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analyse both the internal and the external v-Curries. In the next Section 7, we turn to
another way in which the external v-Curry may be formalised. This simply nests the
V al predicate. We conclude the paper by drawing some of its threads together.

2 The Connective Curry Paradox

Let us start with the c-Curry paradox. An often emphasized remarkable feature of
the c-Curry paradox is that it is negation-free; the only connective involved is impli-
cation. We assume a formal language L comprising a truth predicate T and suppose
that Tarski’s T -schema

A ↔ T (A)

holds. Moreover, we consider a self-referential L-sentence σ such that3

σ ↔ (T (σ ) → A)

holds and assume the principle of Contraction. The paradox is derived as follows:

1. T (σ ) ↔ (T (σ ) → A) [the T -schema, σ ↔ (T (σ) → A)]
2. σ ↔ (σ → A) [1., σ ↔ T (σ ), replacement]
3. σ → A [principle of Contraction, 2. (left to right)]
4. σ [2. (right to left), 3., modus ponens]
5. A [3., 4., modus ponens]

The T -schema, self-reference, and contraction therefore lead to triviality. A simple
solution is to jettison the principle of Contraction, in sequent form: ⇒ ((A → (A →
B)) → (A → B)). If L contains an implication satisfying the standard left and right
introduction rules of a sequent calculus in which cut is admissible, then, as is easy to
check, this and the structural rule of contraction, X, A, A ⇒ B � X, A ⇒ B (where
X is a finite, possibly empty multiset of formulas and X, A denotes the multiset
X ∪ {A}) are interderivable.

This observation brings us to the v-Curry paradox.

3 The v-Curry Paradox

Beall and Murzi’s v-Curry Paradox [3] is meant to lift the c-Curry paradox from the
level of connectives and axioms to the level of derivability statements. Instead of
Tarski’s disquotational T -schema, a disquotational “validity schema” (VS)

V al(A, B) iff A � B

is assumed4 together with a self-referential sentence π satisfying

π ↔ V al(π, A).

3Or even σ ≡ (T (σ ) → A), where ‘≡’ stands for syntactic identity.
4Beall and Murzi require

� V al(A,B) iff A � B

because they assume that validity claims are themselves valid if true.
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Intuitively, π says something like: The (arbitrary) sentence A is derivable from
me. Note that whereas the T -schema in the c-Curry paradox is a first-order object-
language formula and the derivation of the paradox is a derivation making use
of an axiomatic proof system for that language, the above validity schema is a
meta-language statement.

Beall and Murzi [3] then reason as follows in natural deduction style:5

1. π ↔ V al(π, A) [self-referentiality]
2. π [assumption]
3. V al(π, A) [1. (left to right), 2., modus ponens]
4. A [2., 3., (VS)]
5. V al(π, A) [2. – 4., (VS), discharging 2.]
6. π [1. (right to left), 5., modus ponens]
7. A [5., 6., (VS)]

The assumption π is used twice, namely to detach V al(π, A) from π ↔
V al(π, A) and to derive A from V al(π, A). Both occurrences of π are then cancelled
in the discharge step.

In order to make this contraction step clearly visible, to keep the v-Curry paradox
free from an object-language implication, and to present it as a derivation within a
proof system, the validity schema may be reformulated as a pair of natural deduction
rules, namely rules of V al-introduction and V al-elimination:

[A]
...
B

V al(A, B)
(V al−I )

Δ Γ
...

...

V al(A, B) A

B
(V al−E)

and π may be assumed to satisfy the following π-introduction and π-elimination
rules:

V al(π, A)

π
(π − I )

π

V al(π, A)
(π−E)

The notation [A] here indicates that occurrences of A as an assumption in the deriva-
tion of B must be cancelled in the derivation of V al(A, B); the rule (V al − I ) has
no undischarged assumptions. The natural deduction rules for the binary connective
V al( · , · ) resemble the natural deduction rules for positive intuitionistic implica-
tion, and according to Mares and Paoli [9], V al( · , · ) is as a kind of implication.
Contraction is built into (V al−I ) because in deriving V al(A, B), more than one
occurrence of the assumption A may be used to derive B , and hence it may come as
no surprise that the v-Curry paradox arises.

5We slightly change the notation. In particular, Beall and Murzi use an absurdity constant ⊥ instead of an
arbitrary formula A.
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Using the introduction and elimination rules for V al( · , · ) and π , the above
derivation can now be represented in tree-format as follows:

where the superscripts indicate contracting cancellation steps.6

In order to make the use of structural contraction clearly visible, Mares and Paoli
[9] restate Beall and Murzi’s argument in sequent style:7

The subderivations

compress some derivation steps, namely

and

More significantly, however, the subderivations

are not derivations within a given proof system but incorporate meta-level reasoning,
unless suitable sequent rules for V al(A, B) and π are added. If cut is admissible,

6According to Roy Cook [5], the assumption of self-referentiality makes the v-Curry reasoning dependent
on some extra-logical theory such as Peano Arithmetic, so that there is no paradox of strictly logical
validity. In the present case the reasoning depends on the (π−I ) and (π−E) rules.
7We use the sequent arrow ⇒ instead of the turnstile �.
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then instead of right and left introduction rules the following so-called double-line
rules may be used, rules that may be applied bottom-up and top-down (cf. [7]):

We obtain:

Again V al( · , · ) is similar to positive intuitionistic implication if the structural
rules of contraction, monotonicity and permutation are assumed.

However, and most importantly, the argument, in whatever terms couched, uses
the appropriate form of structural contraction, and falls if this is jettisoned.

Note, though, that If we add ⇒ π as an axiom, one may easily observe that A is an
externalconsequence of π , even if the underlying sequent calculus is contraction-free:

Does this fact show that the external version of the v-Curry is forthcoming?

4 Von Kutschera’s Higher-Level Sequent Calculus M∞

To investigate, we need a way of reasoning about higher-order consequence. We now
explore the first way of doing this. This is a higher-order sequent calculus M∞. It
is defined for a given logical object-language L, and the generalized, higher-level
sequents are called S-formulas over L. In presenting M∞, we will closely follow von
Kutschera’s exposition for the sake of comparison with [8].

Definition 1 The set of S-formulas over L is the smallest set S-Form satisfying the
following conditions:

1. Every formula of L belongs to S-Form.
2. (⇒) ∈ S-Form.
3. If S1, . . . , Sn, T ∈ S-Form, then (⇒ T ) ∈ S-Form, (S1, . . . , Sn ⇒ T ) ∈ S-

Form, and (S1, . . . , Sn ⇒) ∈ S-Form.

The S-formulas S1, . . . , Sn, and T are said to be the antecedent formulas, respectively
the succedent formula of the above S-formulas.

We use (i) the letters ‘T ’, ‘U ’, ‘V ’, ‘W ’, ‘W ′’ to denote S-formulas over L and (ii)
‘Γ ’, ‘Δ’, ‘Π’, ‘Θ’, ‘Θ ′’ to denote finite, possibly empty sequences of S-formulas.
Ω is always a sequence of S-formulas containing at most one S-formula. If Γ ≡
T1 . . . Tn, then Ti (1 ≤ i ≤ n) is called a constituent of Γ . We sometimes omit
outermost brackets in S-formulas and write Δ ⇒ Γ as an abbreviation of Δ ⇒ T1,
Δ ⇒ T2, . . ., Δ ⇒ Tn for Γ ≡ T1 . . . Tn.
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Definition 2 Formulas from L are S-formulas of S-degree 0, and (⇒) is an S-
formula of S-degree 1. If n is the maximum of the S-degrees of the S-formulas from
Δ, Ω , then the S-degree of Δ ⇒ Ω is n + 1. S-formulas of degree 1 are called
(ordinary) sequents.

Every S-formula is an S-subformula of itself and the S-subformulas of Δ and Ω

are S-subformulas of Δ ⇒ Ω . An S-formula T is said to be positive iff T does not
contain any S-subformula that has no succedent formula. In what follows, we will be
interested in positive S-formulas only, in particular the S-formula (⇒) will play no
role.

Definition 3 The higher-level sequent calculus M∞ consists of the following axioms
and rules restricted to positive S-formulas:

RF T ⇒ T (reflexivity)
TR′ Δ ⇒ T ; Γ, T ⇒ U � Γ, Δ ⇒ U (cut)8

VV Δ ⇒ T � Δ, U ⇒ T (monotonicity)
SK Δ, T, T ⇒ U � Δ, T ⇒ U (contraction)
ST Δ, T, U, Γ ⇒ V � Δ, U, T , Γ ⇒ V (permutation)
PB Δ, Γ ⇒ T � Δ ⇒ (Γ ⇒ T ) (premise removal)
PE′ Δ ⇒ (Γ ⇒ T ) � Δ, Γ ⇒ T (premise introduction)

8Von Kutschera [8] uses another version of (cut), namely

T R Δ ⇒ T ; Δ,T ⇒ U � Δ ⇒ U,

which on the one hand builds in a contraction to a single occurrence of Δ and on the other hand is less
general than TR′. TR is interderivable with TR′ in the presence of VV, SK and ST. Since we will consider
dropping VV or SK, we will use TR′ instead of TR.

In addition to PE′, von Kutschera also uses another premise introduction rule and says that it is
equivalent with PE′, namely

PE Δ ⇒ Γ ; Δ,T ⇒ U � Δ, (Γ ⇒ T ) ⇒ U

where, due to the restriction to positive S-formulas, the sequence Γ must be non-empty. The rule PE also
builds in a contraction to a single occurrence of Δ. Clearly, PE can be derived from PE′:

where * indicates (possibly repeated) uses of TR′, SK and ST. The converse, however, is problematic,
because von Kutschera derives (⇒ T ) ⇒ T from (⇒ T ) ⇒ (⇒ T ) by means of PE′ and thus allows Γ

in PE′ to be empty. The obvious route to a derivation of PE′ from PE is blocked for empty Γ :

We will therefore use PE′ instead of PE.
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We here restate two important theorems from [8] together with their proofs.9

These observations will be relevant for our suggested formalization of the external
consequence Curry paradox.

Theorem 1 (Internalization) If Δ � T in M∞, then � Δ ⇒ T in M∞.

Proof The proof is by induction on the length l of derivations of T from Δ. If l = 1,
then (i) T is an axiomatic S-formula or (ii) T belongs to Δ. In case (i), an application
of PB gives ⇒ T and by using V V , one obtains Δ ⇒ T . In case (ii), we apply VV
and ST to T ⇒ T . We now suppose that the claim holds for derivations of length at
most n and consider l = n + 1. If T is an axiom or T belongs to Δ, the argument is
as in the previous case. For the remaining cases we assume that the final step in the
derivation of T is an application of one of the rules of M∞.

TR′: T ≡ Π, Γ ⇒ U and by the induction hypothesis, Δ ⇒ (Γ ⇒ V ) and
Δ ⇒ (Π, V ⇒ U) are provable in M∞. We then obtain

where ∗ indicates possibly repeated applications of SK and ST.
VV: T ≡ Γ, U ⇒ V and by the induction hypothesis, Δ ⇒ (Γ ⇒ V ) is provable in
M∞. Then

ST, SK: Similar to the previous case.
PB: T ≡ Γ ⇒ (Π ⇒ U) and by the induction hypothesis, Δ ⇒ (Γ, Π ⇒ U) is
provable in M∞. Then

PE′: Inverse to the previous case.

Let now VT be an S-formula that contains a certain occurrence of T as an S-
subformula and let VU be the result of replacing this occurrence of T in VT by U .

9Note that in the TR′-step of Theorem 1 we use SK, whereas the use of TR can be handled without any
appeal to SK.
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Theorem 2 (Replacement) In M∞ it holds that T ⇔ U � VT ⇔ VU .

Proof Let g be the S-degree of VT minus the S-degree of T . The proof is by induc-
tion on g. If g = 0, then VT ≡ T and the claim is trivial. We now suppose that the
claim holds for g ≤ n and consider g = n + 1. Then VT has the shape Δ, WT ⇒ W ′
or Δ ⇒ WT . By the induction hypothesis, we have T ⇔ U � WT ⇔ WU . Using
TR′, we obtain

Thus, T ⇔ U, VT � VU and T ⇔ U, VU � VT . By Theorem 1, � T ⇔ U, VT ⇒
VU and � T ⇔ U, VU ⇒ VT ; therefore T ⇔ U � VT ⇔ VU .

As von Kutschera points out, since by PB and PE ′, (⇒ T ) ⇔ T is provable,
the above replacement theorem reveals that M∞ is a system of positive intuitionistic
implicational logic.

Note that internal and external consequence defined with respect to M∞ coincide.
If we have S1, . . . , Sn ⇒ T and assume ⇒ S1, . . . , ⇒ Sn, then by applying TR′ n

times, we obtain ⇒ T . For the converse direction, note that by applying PB to the
axiomatic T ⇒ T , we get T ⇒ (⇒ T ) and by applying PE′ to (⇒ T ) ⇒ (⇒ T )

we obtain (⇒ T ) ⇒ T . Theorem 2 tells us that replacing an S-formula ⇒ T by
T (or vice versa) within S-formulas results in mutually interderivable S-formulas.
If now in M∞ we have (⇒ S1), . . . , (⇒ Sn) � (⇒ T ), then by Theorem 1, �
(⇒ S1), . . . , (⇒ Sn) ⇒ (⇒ T ). From the observed substitutability it follows that
� S1, . . . , Sn ⇒ T .

5 The Internal Consequence Curry Paradox Reformulated

Let us now look at the internal v-Curry given this machinery. As we just observed,
internal and external consequence defined with respect to M∞ coincide. A sequent
calculus with respect to which internal and external consequence come apart can be
obtained by dropping either monotonicity or contraction (or both). In order to deal
with a framework in which the two definitions of consequence give rise to different
relations, we first consider the result of removing the monotonicity rule VV from
M∞ and refer to this sequent system as R∞.

The validity predicate of Beall and Murzi can be reformulated as a disquotational
internal derivability predicate Der(·, ·) satisfying the following schema:

Der(A, B) ⇔ (A ⇒ B).

We add the four axiomatic S-formulas Der(A, B) ⇔ (A ⇒ B) and π ⇔ Der(π, A)

to R∞, refer to this system as R
•
∞, and refer to the result of adding the four axioms
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to M∞ as M
•
∞. The sequent π ⇒ A can be proved using the contraction rule

SK:

Let d be the above derivation. We then proceed as follows:

Obviously, this trivialization proof is blocked if SK is given up and derivation d is
no longer available.

The formalization of Beall and Murzi’s v-Curry paradox using (V al−I ) and
(V al−E) in natural deduction, the sequent rules (V al �) in an ordinary sequent calcu-
lus, and the axiomatic sequents Der(A, B) ⇔ (A ⇒ B) in R

•
∞ result in an internal

consequence (or internal validity) Curry paradox. We now come back to the prob-
lem of distinguishing between an internal and an external consequence version of
the v-Curry paradox. Since M∞ and its substructural subsystems allow a nesting of
the sequent arrow, it seems quite natural to consider a disquotational and supposedly
external derivability predicate Prov(·, ·) satisfying Prov(A, B) ⇔ ((⇒ A) ⇒ (⇒
B)).

External consequence satisfies contraction and therefore one might expect that
there exists an external consequence Curry paradox resulting from a disquotational
external consequence predicate used in combination not only with monotonicity-free
subsystems of M∞, but also in combination with contraction-free subsystems of
M∞.

However, the attempt to obtain an external consequence Curry paradox by using
Prov(·, ·) in combination with monotonicity-free or contraction-free subsystems
of M∞, seems to fail. If we assume a self-referential sentence ρ satisfying ρ ⇔
Prov(ρ, A) and try to obtain a Curry argument for Prov(·, ·) and ρ, we need a prov-
able sequent (⇒ ρ) ⇒ (⇒ A), for arbitrary A. As we will see, for this purpose we
need a derivability relation between sequences of sequents and single sequents that
contracts together with an analogue of the internalization result for M∞.

We can define contraction-free derivability relations between sequences of
sequents and single sequents for contraction-free subsystems of M∞, and for these
relations we obtain internalization. Let us first consider the contraction-free “linear”
version L∞ of R∞, i.e., the result of dropping SK from R∞, and let L




∞ be the result
of adding the axioms Prov(A, B) ⇔ ((⇒ A) ⇒ (⇒ B)) and ρ ⇔ Prov(ρ, A) to
L∞.

Let a certain higher-level sequent system be given. We write Δ �l T if in that sys-
tem there exists a derivation of T from Δ in which each constituent of the sequence



External Curries

Δ is used exactly once as a leaf in the derivation tree. Such a derivation is called a
linear derivation of T from Δ in the system.

Theorem 3 If Δ �l T in L



∞, then � Δ ⇒ T in L



∞.

Proof The proof is by induction on the length l of linear derivations of T from Δ.
If l = 1, then T is an axiomatic S-formula and Δ is the empty sequence. Since T is a
possibly higher-level sequent, ⇒ T follows with PB. We now suppose that the claim
holds for derivations of length at most n and consider l = n+1. We may assume that
the final step in the derivation of T is an application of one of the rules of L




∞.
The cases of PB, PE′, and ST are as in the proof of Theorem 1.
The only remaining case is that of TR′. T ≡ Π, Γ ⇒ U . Since each constituent of

the sequence Δ is used exactly once as a premise, we may represent Δ as a sequence
Θ, Θ ′ and assume by the induction hypothesis that Θ ⇒ (Γ ⇒ V ) and Θ ′ ⇒
(Π, V ⇒ U) are provable in L




∞. We then obtain

where ∗ indicates possibly repeated applications of ST.

Let A∞ be the result of removing SK from M∞ to obtain an “affine” linear
logic and let A




∞ be the result of adding Prov(A, B) ⇔ ((⇒ A) ⇒ (⇒ B)) and
ρ ⇔ Prov(ρ, A) to A∞. Let a certain higher-level sequent system be given. We
write Δ �a T if in that system there exists a derivation of T from Δ in which each
constituent of the sequence Δ is used at most once as a leaf in the derivation tree.
Such a derivation is called an affine derivation of T from Δ in the system.

Theorem 4 If Δ �a T in A



∞, then � Δ ⇒ T in A



∞.

Proof The proof is by induction on the length l of affine derivations of T from Δ.
If l = 1, then (i) T is an axiomatic S-formula or (ii) T belongs to Δ. In case (i), an
application of PB gives ⇒ T and by using VV, one obtains Δ ⇒ T . In case (ii), we
apply VV and ST to T ⇒ T . We now suppose that the claim holds for derivations
of length at most n and consider l = n + 1. If T is an axiom or T belongs to Δ, the
argument is as in the previous case. For the remaining cases we assume that the final
step in the derivation of T is an application of one of the rules of A




∞.
The cases of PB, PE′, and ST are as in the proof of Theorem 1.
TR′: We may reason as in the TR′ case of Theorem 3.

Let us consider also R



∞, the result of adding Prov(A, B) ⇔ ((⇒ A) ⇒ (⇒ B))

and ρ ⇔ Prov(ρ, A) to R∞. Let a certain higher-level sequent system be given. We
write Δ �r T if in that system there exists a derivation of T from Δ in which each
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constituent of the sequence Δ is used at least once as a leaf in the derivation tree.
Such a derivation is called a relevant derivation of T from Δ in the system.

Theorem 5 If Δ �r T in R



∞, then � Δ ⇒ T in R



∞.

Proof The proof is by induction on the length l of relevant derivations of T from
Δ. If l = 1, then T is an axiomatic S-formula and Δ is the empty sequence. Since T

is a possibly higher-level sequent, ⇒ T follows with PB. We suppose that the claim
holds for derivations of length at most n and consider l = n+1. We may assume that
the final step in the derivation of T is an application of one of the rules of R




∞.
The cases of PB, PE′, ST and TR′ are as in the proof of Theorem 1. In particular, we
apply SK in the case for TR′.

Theorem 6 (Replacement) In L



∞ it holds that T ⇔ U �l VT ⇔ VU , in R



∞ we
have T ⇔ U �r VT ⇔ VU , and in A




∞ it holds that T ⇔ U �a VT ⇔ VU .

Proof Analogous to the proof of Theorem 2.

If we want to re-do the Curry argument, we may in a first step derive ⇒ A from
⇒ ρ, using the latter S-formula twice:

We thus obtain (i) ⇒ ρ, ⇒ ρ �l ⇒ A, (ii) ⇒ ρ, ⇒ ρ �a ⇒ A, and (iii)
⇒ ρ, ⇒ ρ �r ⇒ A. An application of the contraction rule

Δ, T, T �r U/Δ, T �r U

for �r gives ⇒ ρ �r ⇒ A in R



∞. Such a move is, however, not available in L



∞ with
respect to �l or in A




∞ with respect to �a . Moreover, if we apply Theorems 3 and 5 to
prove (⇒ ρ), (⇒ ρ) ⇒ (⇒ A) in L




∞ and in A



∞, respectively, we cannot contract
to the sequent (⇒ ρ) ⇒ (⇒ A) which we need to continue the Curry argument.

If we consider R



∞ and relevant derivations, we have ⇒ ρ �r ⇒ A but we face
another problem. In a second step we apply Theorem 4 to obtain (⇒ ρ) ⇒ (⇒ A)

as an S-formula provable in R



∞. We may use this S-formula twice to prove ⇒ A in
R




∞. Let d ′ be the following derivation:
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Then

The displayed derivations of the two steps in fact do not make use of the con-
traction rule SK (or the monotonicity rule VV), but we nevertheless fail to obtain an
SK-free derivation of ⇒ A in R




∞ because the reasoning appeals to Theorem 4 and
SK was used in the proof of Theorem 4.

The derivability relations �l , �a , and �r for L



∞, A



∞, and R



∞, respectively, have
the additional drawback that internal and external consequence coincide in each case
because we have both internalization and replacement. (This fact does not contradict
the earlier observation that internal and external consequence may come apart with
respect to sequent calculi that lack either weakening, or contraction, or both. Merely
adding axiomatic sequents to a given sequent system does not impose any restrictions
on how often such an axiomatic sequent may be used as a leaf in a sequent calculus
proof tree.)

Considering ordinary or relevant derivations for L



∞ or A



∞ does not help because
the internalization proof has to deal with the cut rule TR′, and the treatment of TR′
for such derivations requires the use of SK.10

We are thus still confronted with the internal consequence Curry paradox with
respect to π for R

•
∞ and, a fortiori, M

•
∞, and do not obtain a trivialization for a

subsystem of M
•
∞ lacking SK. Indeed, in addition to the earlier trivialization with

respect to Der(·, ·) and π we may use the Der(·, ·) predicate and the self-referential
sentence π in a way analogous to the way we used the Prov(·, ·) predicate and the
self-referential sentence ρ:

We thereby obtain ⇒ π, ⇒ π �r ⇒ A in R



∞, and an application of the con-
traction rule Δ, T, T �r U/Δ, T �r U gives ⇒ π �r ⇒ A in R




∞. We apply

10If TR′ were eliminable, the problem would disappear. But our use of PE′ instead of PE stands in the way
of cut-elimination. A counter example to cut-elimination is the sequent (U ⇒ V ), (T ⇒ U), T ⇒ V for
L-formulas T ,U, V . It can be proved with the aid of TR′:

but has no cut-free proof.
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Theorem 4 to obtain (⇒ π) ⇒ (⇒ A) as an S-formula provable in R



∞. By Theorem
6, π ⇒ A is provable in R




∞ and we can continue as follows:

In this section we have seen two things. First, the internal v-Curry paradox reap-
pears in the presence of the contraction rule SK and it falls with SK’s dismissal.
Second, the obvious way of introducing an external, Curry-prone validity predicate
Prov by assuming Prov(A, B) ⇔ ((⇒ A) ⇒ (⇒ B)) runs into problems. One
might expect the predicate to lead to trivialization even for contraction-free sub-
systems of M∞, where the internal v-Curry paradox fails. The internalization step
that is needed to obtain the trivialization in the case of Prov requires, however,
the use of SK, and using SK, returns the trivializing internal v-Curry paradox with
respect to Der . Nevertheless, von Kutschera’s approach to formalising higher-level
consequence opens a route to an external v-Curry paradox, to which we now turn.

6 The Higher-Order Sequent Calculus M∞

In order to formalize an external consequence Curry Paradox, we may, instead,
employ a higher-level sequent calculus defined over a sequent language. We shall
refer to such a sequent system as a higher-order sequent calculus.

The sequent calculus M∞ formalizes reasoning about nested sequents. We now
consider a higher-order higher-level sequent calculus M∞, which is defined for pos-
itive S-formulas over a given logical object-language L and which admits a nesting
of the turnstile �. The system M∞ formalizes reasoning about nested statements
about derivability between sequents. Its higher-order sequents are called S�-formulas
over L.

Definition 4 The set of S�-formulas over L is the smallest set S�-Form satisfying
the following conditions:

1. Every positive S-formula over L belongs to S�-Form.
2. (�) ∈ S�-Form.
3. If S1, . . . , Sn, T ∈ S�-Form, then (� T ) ∈ S�-Form, (S1, . . . , Sn � T ) ∈ S�-

Form, and (S1, . . . , Sn �) ∈ S�-Form.

The S�-formulas S1, . . . , Sn, and T are said to be the antecedent formulas, respec-
tively the succedent formula of the above S�-formulas.

We use (i) the letters ‘T ’, ‘U ’, ‘V ’, ‘W ’, ‘W ′’ to denote S�-formulas over L
and (ii) ‘Γ ’, ‘Δ’, ‘Π’, ‘Θ’, ‘Θ ′’ to denote finite, possibly empty sequences of S�-
formulas. Ω is always a sequence of S�-formulas containing at most one S�-formula.
We sometimes omit outermost brackets in S�-formulas.



External Curries

Definition 5 Positive S-formulas over L are S�-formulas of S�-degree 0, and (�)

is an S�-formula of S�-degree 1. If n is the maximum of the S�-degrees of the
S�-formulas from Δ, Ω , then the S�-degree of Δ � Ω is n + 1.

Every S�-formula is an S�-subformula of itself and the S�-subformulas of Δ and
Ω are S�-subformulas of Δ � Ω . An S�-formula T is said to be positive iff T does
not contain any S�-subformula that has no succedent formula. In what follows, we
will be interested in positive S�-formulas only, in particular the S�-formula (�) will
play no role.

Definition 6 The higher-order sequent calculus M∞ consists of the following
axioms and rules restricted to positive S�-formulas:

RF T � T (reflexivity)
TR′ Δ � T ; Γ , T � U /Γ , Δ � U (cut)
VV Δ � T /Δ, U � T (monotonicity)
SK Δ, T , T � U /Δ, T � U (contraction)
ST Δ, T , U, Γ � V /Δ, U, T , Γ � V (permutation)
PB Δ, Γ � T /Δ � (Γ � T ) (premise removal)
PE′ Δ � (Γ � T ) / Δ, Γ � T (premise introduction)

We may obtain analogues of Theorems 1–6, but for our purposes it is of primary
interest to formalize the external consequence Curry paradox in complete analogy
to the internal consequence Curry paradox. Let us therefore assume the following
disquotational derivability schema:

Bew(⇒ B, ⇒ C) �� ((⇒ B) � (⇒ C))

and a self-referential S-formula ⇒ γ satisfying

⇒ γ �� Bew(⇒ γ , ⇒ A).

Let R∞ be the result of removing the monotonicity rule VV from M∞. We use
internal consequence in R∞ to represent external consequence in some underlying
contraction-free sequent calculus such as L∞ or A∞ and add the four S�-formulas
Bew(⇒ B, ⇒ C) �� ((⇒ B) � (⇒ C)) and ⇒ γ �� Bew(⇒ γ , ⇒ A) to R∞.
In a first step we prove the S�-formula ⇒ γ � ⇒ A using the contraction rule SK:

Let us refer to this derivation as d ′′. We then proceed as follows:
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The whole argument still requires SK, however (in argument d ′′). Thus, even
formalising external consequence using the higher-order von Kutschera sequent
calculus, SK is still required to push through the paradox.

7 A Second Way of Representing the External v-Curry Paradox

We now turn to a second approach to formalising the external v-Curry paradox. As
heretofore the V al predicate represents internal validity. In the literature, this is stan-
dardly taken to be a one-premise inference, but we need to generalise this to an
arbitrary finite number of premises. To this end, we now take V al to be a binary
predicate whose first argument is a term denoting a finite set of sentences, and whose
second argument denotes a set containing a single sentence. (One may generalise this
to arguments with finitely many conclusions, but this will not be necessary in what
follows.) Thus, we may write things of the form V al({A1, ..., An}, {B}). Let us write
α for {A1, ..., An}, and β for {B}. Then the obvious natural deduction rules for V al

are:

where the first rule contains no undischarged assumptions in the sub-deduction other
than those shown, and these are all discharged. Call these rules V al-in and V al-out.
Note that (for the moment), the arguments of V al denote sets (not multisets).

The special cases of the rules where α = ∅ are:

...

B V al(∅, β)

V al(∅, β) B

The first inference has no undischarged assumptions at all in the sub-deduction.
The standard internal validity Curry paradox concerns a sentence, G, of the form:

V al({G}, {A}), where A is an arbitrary sentence. The core of the Curry argument is
now a deduction of G, that is, V al({G}, {A}), as follows:

The second inference is V al-out. The last inference, V al-in, discharges both
occurrences of the assumption G, and hence produces an unconditional proof of
V al({G}, {A}). But this is, of course, G, so V al-out gives a proof of A.

As already mentioned, a standard solution to the paradox is to deny contraction. In
this form of proof, what this amounts to is taking the arguments of V al to denote, not
sets, but multi-sets. The above argument then establishes only that V al({G, G}, {A}),
and the argument is broken.
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Of course, if we have a proof of G, we can simply prepend it to each occurrence
of G in the above proof, to produce an unconditioned proof of A. But this fact is not
paradoxical, since we have (at least as far as anything so far goes) no contraction-free
proof of G.

Now, can we obtain the validity-Curry paradox for external validity on this
approach? The notion of external validity, Bew, can be defined in the obvious way,
as:

V al({V al(∅, {A})}, {Val(∅, {B})})
Note that this is quite different from internal validity: V al({A}, {B}).

We may now form a Curry sentence, H , of the form Bew({H }, {A}). (H is: The
inference from [the validity of the inference from the empty set to this sentence] to
[the validity of the inference from the empty set to A] is valid.) Paralleling the core
part of the internal validity-Curry proof, we now have the following argument for H ,
that is Bew({H }, {A}):

The first inference is an application of V al-out; the fourth inference is another
application of V al-out; the fifth inference is V al-in, discharging the two occurrences
of the assumption V al(∅, {H }); and the other inferences are just a matter of defini-
tion. As is clear, the argument will fail if V al-in is formulated in terms of multisets.
For we will then establish only

V al({V al(∅, {H }), V al(∅, {H })}, {Val(∅, {A}})
at the penultimate line.

But as before, line five gives us a proof of V al(∅, {A}) depending only on two
occurrences of V al(∅, {H }). Hence, if we had an unconditional proof of this, we
would have a proof of A by V al-out. However, for a proof of V al(∅, {H }), we need
an unconditional proof of H ; that is, an unconditional proof of

V al({V al(∅, {H })}, {V al(∅, {A})}).
That is, we need an argument of the form:

V al(∅, {H })
...

V al(∅, {A})
with only one undischarged occurrence of the assumption. And again as in the
internal case, this is exactly what we do not have.

The internal and external validity Curry paradoxes are, then, on this analysis,
exactly parallel.
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8 Conclusion

Drawing on their distinction between connective paradoxes and structural paradoxes,
Mares and Paoli [9, Section 5.3] make the following comment on the v-Curry paradox
(where “LL” denotes linear logic with no exponentials and no additive constants):

This typically structural paradox underscores the ambiguity of the classical
concept of consequence. On the internal reading, as we have seen, Structural Con-
traction is utterly suspect, and in fact, it fails in the internal consequence relation of
LL, which therefore avoids the difficulty. On the other hand, one could suggest to
switch to an external reading, where such a rule is again available. Does that mean
that we are back in trouble? No, for external consequence lacks anything like the
deduction theorem, and therefore the disquotational validity schema – in particu-
lar its V al-In part, namely if A � B then V al(A, B) – becomes problematic. This,
of course, if V al(A, B) is understood (correctly, we think) as a predicate appro-
priate for internal validity. Graham Priest suggested in conversation that we could
regain the paradox if we had a corresponding predicate for external validity, for
then an external reading of the turnstile would support all the ingredients needed
for the argument to succeed. We think, however, that our theory should contain
no such predicate, exactly as it contains no implication that residuates extensional
conjunction – and V al, for us, is a form of implication.

In our discussion, we started by recalling that the c-Curry paradox is broken by
giving up Contraction for the conditional → (or by giving up the Law of Absorp-
tion). Moreover, in the appropriate context, this principle is equivalent to structural
contraction. Giving up structural contraction also breaks the v-Curry paradox for
internal validity. We have seen that an external v-Curry paradox can be formalised
with two different approaches; and in both of these—contra Mares and Paoli—there
is an external validity predicate. The first uses a higher-order sequent calculus, the
second nests the internal V al predicate. But in both of these, the Curry-reasoning
involves contraction, either as a structural rule (in the first formalisation), or as reduc-
ing multisets to sets (in the second formalisation). Hence, giving up the appropriate
forms of contraction solves all the versions of the Curry paradox.
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