
Chapter 10
Realism, Antirealism, and Paraconsistency

Graham Priest

10.1 Introduction

The debate between realists and antirealists (about various topics) has occasioned
an enormous literature in the last 35 years.1 Usually this is carried out in terms
of the contrast between classical and intuitionist logic. Intuitionist logic is not, of
course, the only non-classical logic.2 Another important class of such logics com-
prises paraconsistent logics. How do they fit into the debate? This note answers the
question. Paraconsistency, as such, is neutral to the debate, in the sense that there
are paraconsistent logics that are as unfriendly to antirealism as classical logic; and
there are paraconsistent logics that are as susceptible to an antirealist understanding
as intuitionist logic. I will show this by considering just one family of paraconsistent
logics: those that have a binary relational semantics.

10.2 Classical vs. Intuitionist Logic

The heart of the realist/antirealist debate about some matter concerns whether sen-
tences about it are to be given truth conditions where the notion of truth in question
is verification-transcendent. Thus, consider classical propositional logic. We may
suppose that the language contains the connectives ∨, ∧, ⊃, and ¬. An evaluation is
a function, ν, which assigns a truth value (1 or 0) to every propositional parameter.
This is then extended to such a map for all formulas by the familiar conditions. For
all formulas, A and B:

ν(A ∨ B) = 1 iff ν(A) = 1 or ν(B) = 1

1 For a gentle introduction, see [11, chap. 8].
2 For an introduction to non-classical logics, see Priest [6, 9].
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ν(A ∧ B) = 1 iff ν(A) = 1 and ν(B) = 1
ν(A ⊃ B) = 1 iff ν(A) = 0 or ν(B) = 1
ν(¬A) = 1 iff ν(A) = 0

Validly is defined as terms of truth preservation in all evaluations.
The truth conditions for negation are such that ¬A is true simply if A fails to

be true. Generally speaking, we may have no way of telling of a sentence that it
fails to be true. We would appear to have no way of knowing, for example, whether
‘There are unicorn-like creatures at some place and time in the cosmos’, fails to be
true. The truth condition of negation are therefore verification-transcendent. More
generally, the logic verifies the Law of Excluded Middle (LEM): for all A, A ∨ ¬A
is valid. Yet for some As we may have no way of verifying either A or ¬A.

Compare this with intuitionist logic. This can be given a familiar Kripke-style
semantics.3 An interpretation is a structure �W, R, ν�. W is a non-empty set of
worlds. These are to be thought of as states of information. Each contains the things
that have been verified at a certain stage. That is:

νw(A) = 1 iff A is verified at w

R is a binary accessibility relation on the worlds. w1 Rw2 means that w2 is a possible
state of information obtained from w1 by adding some number (possibly zero) of
verifications. It is therefore reflexive and transitive. ν is a map which assigns a truth
value, νw(p) (1 or 0), to each propositional parameter, p, at each world, w. There is
a heredity constraint:

if νw1(p) and w1 Rw2 then νw2(p)

What is verified stays verified. (Given the truth conditions for the connectives,
this extends to all formulas.) The truth conditions for the connectives are given as
follows:

νw(A ∨ B) = 1 iff νw(A) = 1 or νw(B) = 1
νw(A ∧ B) = 1 iff νw(A) = 1 and νw(B) = 1
νw(A ⊃ B) = 1 iff for all w� such that wRw�, νw�(A) �= 1 or νw�(B) = 1
νw(¬A) = 1 iff for all w� such that wRw�, νw�(A) = 0

Validity is defined in terms of truth preservation at all worlds of all interpretations.
The truth conditions for negation say that ¬A holds at a world if at no further

worlds A holds. Intuitively, the only way for this to happen is for us to have a ver-
ification that A will never be verified. (If we have such a verification, A will never
be verified. Conversely, if we have no such verification, then there is a possible

3 See [6, §6.3].
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future in which A is verified.) Hence, the semantics give a plausible representa-
tion of the fact that the truth conditions of negation may be understood in terms of
verification.

Similarly, the truth conditions of the other connectives can be thought of in terms
of verification. A conjunction is verified iff both conjuncts are. A disjunction is ver-
ified iff a disjunct is. The truth conditions for the conditional say that we will never
have A without B. The only way for this to happen is for us to have a construction
that turns verifications of A into verifications of B. (If we have such a construction,
any verification of A may be turned straightforwardly into a verification of B. Con-
versely, if we have no such construction, then there is a possible future in which A
is verified but not B.)

10.3 The Logic of Constructible Negation

Let us now consider the logic of constructible negation, N3, first proposed by Nelson
[3]. This is essentially intuitionist logic with a different account of negation. It can be
given a Kripke-style semantics as follows. An interpretation is a structure �W ,R,ρ�.
W and R are as for intuitionist logic. ρ is a world-indexed relation between propo-
sitional parameters and {1, 0}, subject to the constraint that for every propositional
parameter, p, and world, w:

Exclusion: it is not the case that pρw1 and pρw0

Nothing is both true and false. (And given the truth/falsity conditions for the con-
nectives, this extends to all formulas.) Since truth and falsity are not independent,
two heredity conditions are required. For every propositional parameter, p:

if pρw1 1 and w1 Rw2 then pρw2 1
if pρw1 0 and w1 Rw2 then pρw2 0

Again, given the truth conditions for the connectives, this extends to all formulas.
The truth/falsity conditions for the connective are as follows:

(A ∨ B)ρw1 iff Aρw1 or Bρw1
(A ∨ B)ρw0 iff Aρw0 and Bρw0

(A ∧ B)ρw1 iff Aρw1 and Bρw1
(A ∧ B)ρw0 iff Aρw0 or Bρw0

(A ⊃ B)ρw1 iff for all w� such that wRw�, it is not the case that Aρw�1
or Bρw�1

(A ⊃ B)ρw0 iff Aρw1 and Bρw0
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¬Aρw1 iff Aρw0
¬Aρw0 iff Aρw1

Validity is defined, as usual, in terms of truth preservation at all worlds of all
interpretations.

As far as the positive logic goes, this is just the same as intuitionist logic. The
semantics vary only in their handling of negation.4 The question is whether this
makes good antirealist sense. In particular, what are we to make of the fact that
Aρw0?

The obvious answer is that, just as Aρw1 means that A is verified at w, so Aρw0
means that A ia falsified. Does the antirealist have an independent notion of falsi-
fication? The answer is ‘yes’. There are ways of showing that something is false
directly. Perception can be such a method. One can see directly that something is
not the case. For example, when you enter a room you can see that Pierre is not
there. You do not have to see that the things in the room are a table, a chair, . . . and
reason: Pierre is not a table, Pierre is not a chair, . . . therefore Pierre is not in the
room.5 Moreover, if one is not tied to intuitonist logic, one can give a direct proof
of a negated sentence. And given the fact that verification and falsification make
perfectly good independent sense, then the logic of constructible negation makes
perfectly good antirealist sense. Modulo this change, we tell exactly the same story
as for intuitionist logic.

Given the understanding of direct falsification, the falsity conditions for the con-
nectives are straightforward, with the exception of those for the conditional. Gen-
erally speaking, it is less than clear when one should take a conditional to be false.
The Nelson conditions say that a conditional, A ⊃ B, is false iff there is an actual
counter-example, A ∧ ¬B. It is certainly plausible that this is a sufficient condition.
It is less clear that this is necessary.

Unlike intuitionist logic, N3—and all the logics in the same family that we will
go on to note—verifies both halves of the Law of Double Negation, and especially
¬¬A |� A. From the antirealist perspective that N3 provides, the failure of this in
intuitionist logic is entirely an artifact of its semantic one-sidedness. Contraposition,
on the other hand, fails: A → B � ¬B → ¬A. Truth preservation forward does not
guarantee falsity preservation backwards.

Note that it is possible to have a second negation in the language, which behaves
as does intuitionist negation. Thus, suppose that there is a constant, ⊥, that is false
everywhere: an intuitionist-like negation may be defined as A ⊃ ⊥. Then A ⊃ ⊥
is true at w if A is true at no accessible world, and A ⊃ ⊥ is false at w if A is
true at w. We may think of ¬A as expressing a direct falsification, and A ⊃ ⊥ as
expressing an inferential one. ¬A is stronger than A ⊃ ⊥. If ¬A holds at w, it holds
at all accessibile worlds, by heredity. Hence A fails at all accessible worlds, that is,
A ⊃ ⊥ is true at w: ¬A � A ⊃ ⊥. But it is quite possible to have A ⊃ ⊥ true at

4 On all this, see [9, §9.7a].
5 This and other examples are discussed in [8, chap. 3] (esp. 3.5).
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w, that is, A true at no accessible world, without having ¬A true at w (¬A may, in
fact, fail at all accessible worlds): A ⊃ ⊥ � ¬A.6

10.4 Paraconsistency

N3 is not a paraconsistent logic. In it, contradictions still entail everything. However,
we get a paraconsistent logic, N4, simply by dropping the Exclusion constraint.7 In
this, contradictions do not imply everything. Can we make sense of this liberalisa-
tion from an antirealist perspective?

In N4, truth and falsity at a world, that is, verification and falsification, have
complete independence. That one may be in a position to verify neither A nor ¬A,
that is, in a position neither to verify nor to falsify A, is standard antirealist fare.
The thought that one might be in a position to verify both A and ¬A, that is, in a
position both to verify and to falsify A, is more radical. Yet it makes perfectly good
sense. In some paradoxes, such as Berry’s, for example, one can give a verification
(direct proof) of some claim and a falsification (direct proof of the negation) of it.
For another example, there are many terms in science that are multi-criterial; that
is, for which we have more than one criterion for applying them. Obvious examples
are temperature terms. That the fluid in some beaker has a temperature of 20◦C can
be verified by both a correctly functioning mercury thermometer and a correctly
functioning electro-chemical thermometer. However, there is no reason a priori why
these two criteria should hang together. It could be the case that, by one criterion, the
fluid has a temperature of 20◦C; yet by the other it has a temperature of 21◦C, and
so it does not have a temperature of 20◦C. Arguably, there are places in the history
of science where exactly this divergence of criteria has happened.8 N4, therefore, is
a perfectly acceptable antirealist logic.9

These considerations show, incidentally, not only that there are paraconsistent
logics that have antirealist interpretations, but that dialetheism is also quite compat-
ible with antirealism. In the situation explained, A is both verified and falsified; that
is, both A and ¬A are true.

There is another logic with constructible negation in the vicinity of N3 and N4.
Start with N4, and augment this with the constraint which is the dual of Exclusion.
For every propositional parameter, p, and world, w:

Exhaustion: either pρw1 or pρw0

6 In N4, which we shall meet in the next section, the inference in both directions fails. The fact that
¬A is true at a world does not entail that A is not true there.
7 N4 was first proposed by Almukdad and Nelson [1]. N3 and N4 are discussed in [13], and also
in [9, §9.7a], where they are called L3 and L4.
8 The point is made in [4, chap. 1] and further discussed in [10, §2.II.i].
9 Rumfitt [12] argues for treating truth and falsity even-handedly, in the way required by N3 and
N4. He does so by analysing falsity in terms of a primitive notion of rejection. This will do for N3,
but not for N4, which would require one the be able to simultaneously accept and reject something.
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If all else remains the same, this does not guarantee that the condition carries over
to all sentences. (The induction proof breaks down in the case for the conditional).
To ensure that is does, we have to change the falsity conditions for conditional to:

(A ⊃ B)ρw0 iff for some w� such that wRw�, Aρw�1 and Bρw�0

Note that with these falsity conditions, the heredity condition no longer holds for
all formulas, though it does hold for positive (negation-free) formulas.10 Call the
resulting logic, M .

As may be seen, it verifies the LEM. M is a paraconsistent logic, but not one that
is acceptable to an antirealist since it verifies the LEM.

It should also be noted that the ∨-∧-¬ fragments of N4, M , and N3 are the well
known many-valued logics FDE , L P , and K3, respectively.11 (In these, the world
structure becomes, in fact, irrelevant.) The first two of these are paraconsistent, but
the second is ruled out for antirealist purposes because it verifies the LEM. FDE ,
however, is a perfectly acceptable paraconsistent antirealist logic.

10.5 Quantified Intuitionist Logic

So far, we have considered only propositional logics. Do the considerations carry
over once we add quantifiers?

A Kripke interpretation for first order intuitionist logic is a structure �W,R,D, ν�.
W and R are as in the propositional case. For every w ∈ W, Dw is a set of objects,
subject to the constraint that:

if w1 Rw2 then Dw1 ⊆ Dw2

The domain contains all those things we have constructed at that stage. We may
construct new objects later, but what has been constructed stays constructed. For
every constant, c, in the language, ν(c) ∈ Dw for all w ∈ W ; and for every n-place
predicate, P, and w ∈ W, νw(P) ⊆ Dn

w, subject to the constraint that:

if w1 Rw2 then νw1(P) ⊆ νw2(P)

which is now the appropriate form of the heredity constraint.
Truth values (1, 0) at worlds are assigned to atomic formulas by the conditions:

νw(Pa1 . . . an) = 1 iff �ν(a1), . . . , ν(an)� ∈ νw(P)

10 This means that the logic is not closed under uniform substitution. Closure can be regained
by dropping the heredity condition for propositional parameters. This produces a system almost
identical to that of [5, chap. 6]. The only difference is in the properties of the accessability relation.
11 See [6, chaps. 7 and 8].
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The truth conditions for the connectives are as in the propositional case. For the
quantifiers:

νw(∃x A) = 1 iff for some d ∈ Dw, νw(Ax (kd))

νw(∀x A) = 1 iff for all w� such that wRw� and all d ∈ Dw� , νw(Ax (kd))

Here, we take the language to be augmented by a set of constants, kd , such that kd

denotes d, and Ax (c) is A with all free occurrences of x replaced by c. Note that the
truth conditions for ∃ relate to just the instances at the world at issue, whilst those
for ∀ relate to both it and all its future worlds.

As in the propositional case, one can show that:

if w1 Rw2 and νw1(A) = 1 then νw2(A) = 1

Validity is defined, as in the propositional case, in terms of truth preservation at all
worlds of all interpretations.12

These truth conditions naturally capture an appropriate antirealist understanding
of the quantifiers. ∃x A is verified at a stage just if some instance is. And ∀x A is
verified if every instance is verified whatever we go on to construct. Intuitively,
this can happen only if we have a construction that applies to any object we come
up with, d, to give a proof of Ax (kd). (If there is such a construction, then whatever
object we construct at a later time, there will be a proof that it satisfies A. Conversely,
if there is no such construction, then there is a possible development in which we
find an object for which there is no proof.)

10.6 Quantified Logics of Constructible Negation

A first order version of N4 is obtained from its propositional logic as for intuitionist
logic. An interpretation is a structure �W,R, D, ν�. Interpretations are the same as
for intuitionism, except that for every world, w, νw(P) = �E,A�, where E,A ⊆ Dn

w.
(E and A are the extension and antiextension of P at w. I will write them as ν+

w (P)

and ν−
w (P), respectively.) We now need a double heredity constraint:

if w1 Rw2 then ν+
w1

(P) ⊆ ν+
w2

(P)

if w1 Rw2 then ν−
w1

(P) ⊆ ν−
w2

(P)

And the relation ρ is defined in the natural way:

Pa1 . . . anρw1 iff �ν(a1), . . . , ν(an)� ∈ ν+
w (P)

Pa1 . . . anρw0 iff �ν(a1), . . . , ν(an)� ∈ ν−
w (P)

12 See [9, chap. 20].



188 G. Priest

The truth/falsity conditions for the connectives are as in the propositional case. For
the quantifiers:

∃x Aρw1 iff for some d ∈ Dw, Ax (kd)ρw1
∃x Aρw0 iff for all w� such that wRw� and all d ∈ Dw� , Ax (kd)ρw�0
∀x Aρw1 iff for all w� such that wRw� and all d ∈ Dw� , Ax (kd)ρw�1
∀x Aρw0 iff for some d ∈ Dw, Ax (kd)ρw0

As in the propositional case, one can show that:

if w1 Rw2 and Aρw1 = 1 then Aρw2 = 1
if w1 Rw2 and Aρw1 = 0 then Aρw2 = 0

Validity is defined, as usual, in terms of truth preservation at all worlds of all
interpretations.

Note that the falsity conditions for ∀ and ∃ are the reverse of what one might have
expected. The quantifier ∃ relates to the world in question and all its future worlds;
the quantifier ∀ relates just to the world in question. This is required to ensure that
the heredity conditions hold for all formulas.

As for intuitionist logic, these truth/fasity conditions naturally capture an appro-
priate antirealist understanding of the quantifiers. ∃x A is verified at a stage just if
some instance is. It is falsified if every instance is falsified whatever we go on to
construct. Intuitively, this can happen only if we have a construction that applies
to any object we come up with, d, to give a proof of ¬Ax (kd). (If there is such
a construction, then whatever object we construct at a later time, there will be a
proof that it satisfies ¬A. Conversely, if there is no such construction, then there is a
possible development in which we find an object for which there is no such proof.)

Dually, ∀x A is falsified at a stage just if some instance is. It is verified if every
instance is verified whatever we go on to construct. Intuitively, this can happen only
if we have a construction that applies to any object we come up with, d, to give a
proof of Ax (kd). (If there is such a construction, then whatever object we construct
at a later time, there will be a proof that it satisfies A. Conversely, if there is no such
construction, then there is a possible development in which we find an object for
which there is no such proof.)

First-order versions of N3 and M are obtained in exactly the same way. For N3
we need the extra constraint that ν+

w (P) ∩ ν−
w (P) = φ. For M , the appropriate

constraint is that ν+
w (P) ∪ ν−

w (P) = Dn
w, and we modify the falsity conditions for

the conditional as in the propositional case. It is not difficult to show that for N3, no
formula, A, is such that Aρw1 and Aρw 0; and for M , every formula, A, is such that
either Aρw1 or Aρw 0.

Quantified N3 is acceptable to an antirealist, but it is not paraconsistent. Quanti-
fied M is paraconsistent, but not acceptable to an antirealist because it validates the
LEM. N4 is both acceptable to an antirealist and paraconsistent.
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Perhaps the most surprising thing about N4 (and the other two logics) from the
present perspective, is the following. Intuitionist logic verifies only the first three of
the classical negation/quantifier exchange principles:

∀x¬Px � ¬∃x Px
¬∃x Px � ∀x¬Px
∃x¬Px � ¬∀x Px
¬∀x Px � ∃x¬Px

The fourth is invalid. The logics with relational semantics validate all four. Checking
the first three is left as an exercise. Here is the fourth. Suppose that in world w of
an interpretation ¬∀x Pxρw1. Then for some d ∈ Dw, Pkdρw0. Hence, ¬Pkdρw1,
and ∃x¬Pxρw1.

It should be noted, though, that the intuitionistic invalidity:

∀x(Pa ∨ Qx) � Pa ∨ ∀x Qx

still fails, since this does not involve negation at all. (Here is a diagram of a standard
counter-model:

� �
w0 → w1

a

P ×
Q

√

a b

P
√ ×

Q
√ ×

The boxes give the extensions of P and Q at each world. The anti-extensions are
irrelevant.)

10.7 Conclusion

We have now seen, as promised, that there are paraconsistent logics that are
antirealism-friendly, and paraconsistent logics that are not. The examples examined
were logics that deploy a relational semantics for negation. The main feature of the
these logics for present purposes is that they treat truth and falsity even-handedly.
This results in the validity of the Law of Double Negation and all the classical nega-
tion/quantifier exchange principles. These are a striking divergence from standard
intuitionist logic, but perfectly defensible from an antirealist perspective, as we have
seen.



190 G. Priest

Of course, there are many other paraconsistent logics, of widely different kinds.13

To determine on which side of the realism/antirealism fence each sits requires its
own investigation. Sometimes this will be obvious. For example, if the logic verifies
the LEM, it is not going to sit on the antirealist side. Sometimes it will not be obvi-
ous. For example, do the ternary relation and the * function standardly employed in
the semantics of relevant logics sustain an antirealist interpretation? This is a hard
question, if for no other reason than that it is not clear what to make of these notions
quite generally.14 However, the present paper suffices to establish the general neu-
trality of paraconsistency on the realism/antirealism issue.

Acknowledgements Versions of this paper were given at the Universities of Melbourne,
St Andrews, and Lille in the second half of 2007. I am grateful to the audiences in those places for
their helpful comments.
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