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Abstract A motivation behind one kind of logical pluralism is the thought that

there are different kinds of objects, and that reasoning about situations involving

these different kinds requires different kinds of logics. Given this picture, a natural

question arises: what kind of logical apparatus is appropriate for situations which

concern more than one kind of objects, such as may arise, for example, when

considering the interactions between the different kinds? The paper articulates an

answer to this question, deploying the methodology of Chunk and Permeate,

developed in a different context by Brown and Priest (J Philos Log 33:379–388,

2004).

1 Logical Pluralism and Crossing Kinds

A popular motivation for logical pluralism is something like this: there are different

kinds of situations, and different logics (or consequence relations) may be

appropriate for reasoning about them—in the sense that if you know (or assume)

that certain things hold in these situations, the logic is guaranteed to give you other

things that hold in the situation.1 For example, one might hold that intuitionist logic
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1 The pluralisms of Batens (1985, 1990), Beall and Restall (2006), Bueno (2002), and da Costa (1997),

though very different, can all be seen in this way. I do not suggest that any of them would endorse the

following examples.
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is the appropriate logic for reasoning about a situation involving mathematical

constructions; that quantum logic is appropriate for a situation involving quantum

objects; that classical logic is appropriate for a situation involving medium-sized dry

goods; that paraconsistent logic is appropriate for a situation involving (naive)

inconsistent sets; and so on. Though I do not subscribe to this view myself,2 let us

grant it here.

An obvious issue arises when it is observed that sometimes we may have to

reason about a situation that concerns more than one kind of object—for example, in

considering the relations between them. Thus, quantum states and observational

devices (which are medium sized dry goods) interact. In reasoning about their

interactions, we need to reason about both. Or again, one of the things that the naive

notion of set applies to is mathematical constructions. To reason about this

application, we need to reason about a situation involving both constructions and

sets. Now, the question is: what logic is it appropriate to apply in such cases?

A natural thought is that we should apply the intersection of the logics

appropriate for the different pure kinds. An inference is acceptable if it is valid in all

the relevant logics. But this logic is likely to be too weak: in reasoning about

different kinds of objects collectively, we will sometimes have to reason about each

kind severally, and the intersection logic is liable to be too weak for this. Thus, for

example, suppose that we find ourselves reasoning with a sentence of the form

Pa! aRb; where a and b are of different kinds. We can use the logic common to

things of a’s kind and things of b’s kind. Maybe this includes modus ponens. But we

may need to reason about things of just a’s kind to establish Pa; and this may need

more than just the logic in the intersection.

Another thought is that we need a logic which is sui generis. What such a logic

would be like, and, indeed, whether one can construct an appropriate one at all,

would be pressing questions. But there is something unsatisfactory about this

approach anyway. Situations concerning the interface between different kinds of

objects surely depend on the situations concerning those objects themselves. The

appropriate logic for the situation is not, therefore, sui generis; it is, at least in part, a

function of the logics for each kind.

The purpose of this paper is to suggest a more satisfactory answer to the question. I

will give a model of how different logics may be combined in a non-trivial fashion,

allowing us to reason across kinds. The model is an application of the method chunk

and permeate (C&P).3 In this, reasoning is partitioned into discrete ‘‘chunks’’; but

the chunks are not isolated: information of certain kinds is allowed to flow

(‘‘permeate’’) between the chunks. The model was developed to account for a certain

kind of reasoning with inconsistent information. Reasoning in a certain way, we

establish conclusions about various objects. The results of this reasoning are then fed

into another theory, where we continue to reason, but on a basis different from,

indeed, inconsistent with, the first. (The reasoning of the original infinitesimal

calculus seems to be of this kind. In this, we establish properties of certain functions

on the assumption that infinitesimals are non-zero. We then feed these results into

2 Priest (2006), ch. 12.
3 Brown and Priest (2004, 200?).
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another theory, and continue to reason, but on the assumption that infinitesimals are

zero.) In the applications of the model already given, the reasoning in each chunk was

classical; but, as was pointed out,4 there is absolutely no reason why this must be the

case: the logic may vary from chunk to chunk. If this be the case, the model provides

a natural way of handling the application of different logics in combination.

In Sect. 2, I will describe the general structure of a C&P model. In Sect. 3 we will

look at some simple applications of the model.

2 C&P Structures

The basic units of a C&P structure are the chunks. A chunk, Ci, is a theory. It has a

language, Li, with a set of closed formulas, Fi, a set of axioms, Ai, and a logical

consequence relation, ‘i : The languages of chunks may be different, but may

overlap. The machinery of permeability between the chunks i and j (i = j)

comprises two parts: the permeability filter, qij, which is a subset of Fi; and a

translation function, tij, which is a map from Fi to Fj. The map provides a way of

translating the sentences of Li into those of Lj.
5 (In the original papers, tij was always

the identity function, and so it received no separate mention.) Notation: if R is a set

of sentences, then Rt is just ftðrÞ : r 2 Rg: A C&P structure then has the form

S ¼ f Li;Ai;‘ih i : i 2 Ig; f qij; tij

� �
: i; j 2 I; i 6¼ jg; o

� �
. o is a distinguished mem-

ber of I, and Co is the output chunk.

Intuitively, the structure operates as follows. We compute the consequences of

each chunk in the standard way. For each i 2 I; the consequences of the chunk Ci

that are in qij—or, more precisely, their translations—are them added to Aj. We then

compute the consequences of each chunk anew, and repeat the process. The final

output of each chunk is what results after we have been through this process x
times, and the output of the structure is the output of Co.6

More formally, the axioms, Ai
n, and theorems, Ti

n, of chunk i at the nth stage of

the process are defined by a joint recursion on n as follows:

A0
i ¼ Ai

T0
i ¼ fa : A0

i ‘i ag
Anþ1

i ¼ An
i [

[

i6¼j2I

ðTn
j \ qjiÞtji

Tnþ1
i ¼ fa : Anþ1

i ‘i ag
The eventual output of each chunk, Ti

x, is defined in the obvious way: Tx
i ¼S

n2x T : And S� a iff a 2 Tx
o :

4 Brown and Priest (2004), Sect. 5.
5 A natural assumption is that qij should be identified syntactically, so that it is recursive. All the

examples in the paper are of this kind. But in principle anyway, it could be determined in some other way.

There is no reason in theory why is should not be a set of arbitrary computational complexity. Of course,

if practice, not theory, is important, matters are different.
6 And obviously, if this output is to be more than just the consequences of A0, some information had

better flow into C0!
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Such is the general structure. It is much more powerful than is necessary for most

applications. In particular, if there is only a finite number of chunks, and there are no

cycles in the flow of information between chunks, then the final output of each

chunk is established after some finite n. Such will be the case is what follows.

Before we move on to some examples, I note that the whole C&P mechanism can

be formulated as one ‘‘hyper-theory’’. The language of the theory is the language of

Co, augmented, for every i 2 I; by a monadic predicate, Ti, and a name ah i; for

every formula, a, of Li. Ti ah i means, intuitively, that a is a theorem of chunk i. The

axioms are:

• for each i 2 I; and a 2 Ai; Ti ah i
The logic of the theory is ‘o; augmented by the rules of inference:

• for every i 2 I; and every valid inference, a1; . . .; an ‘i b; Ti a1h i; . . .; Ti anh i
‘ Ti bh i

• for every a in qij, and i 6¼ j 2 I; Ti ah i ‘ Tj tijðaÞ
� �

• for every a in Lo; To ah i ‘ a:

A little thought suffices to show that any proof in the C&P machinery can be

mirrored in this single hyper-theory.

3 Examples

I will now give four examples of the C&P mechanism to show how it handles the

use of a plurality of consequence relations.

3.1 Example 1: Different Logics for Different Kinds of Objects

For the first example, we suppose that we have two different kinds of object, that

different logics are appropriate for reasoning about the different kinds, but that we

sometimes wish to reason about both kinds of object together.

There are three chunks. C1 is a theory of objects of kind 1. L1 is a first-order

language with constants in the set C1; and predicates in the set P1: The theory of C1

has an underlying logic, ‘1; say intuitionist logic, and some appropriate set of

axioms. C2 is a theory of objects of kind 2. The language is a first-order language

with constants in the set C2; and predicates in the set P2 (where

C1 \ C2 ¼ / ¼ P1 \ P2). C2 has an underlying logic, ‘2; say some paraconsistent

logic, and some appropriate set of axioms. C0 is the output chunk. L0 is a first-order

language whose vocabulary contains the union of those of L1 and L2, but also

contains other predicates. In particular, it has two new monadic predicates, K1 and

K2. (Intuitively, these are going to apply to objects of kinds 1 and 2, respectively.)

Its axioms concern the predicates particular to the language, and its logic is the

intersection of ‘1 and ‘2; that is, R ‘0 a iff R ‘1 a and R ‘2 a. q10 = F1, and t10 is

the identity translation, except that all quantifiers are relativised to K1. That is,

sentences of the form Axa and Vxa are translated as Ax(K1x^a) and 8xðK1x! aÞ
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respectively.7 q20 and t20 are exactly the same, except that ‘1’ is replaced by ‘2’. For

all other i = j, qij = /. We may depict the structure as follows:

Reasoning works as follows. Within C1 we may reason about objects of kind 1,

according to ‘1 : Results permeate into C0 (in translated form), and since this is the

output chunk, are outputted. Similarly for objects of kind 2 and C2. But, using

the information established in C1 and C2, and any other information provided by the

axioms of C0, we may reason about both kinds of objects and their relations.

Whether or not new facts about objects of just kind 1 may be established in the

process depends on the axioms of C0. If they can, they cannot be inferred from the

information that permeates into C0 from C1 alone, since ‘0 is a sub-logic of ‘1 :
Similarly for objects of kind 2.

3.2 Example 2: Consistent Objects Within an Inconsistent Theory

The second example concerns how one may reason about consistent objects in a

context where not everything behaves consistently. Essentially, one would like to

apply classical logic to, but only to, such objects. To illustrate, let us suppose that

numbers behave consistently, but sets, in general, do not.

There are two chunks, CN and CS. The output chunk is CS. LN is the language of

first-order arithmetic: one constant, 0, two binary predicates, = and S (successor), and

the usual quantifiers and connectives. (The example could be extended to allow the

language to contain the predicates of addition and multiplication as well; but let us

keep things simple.) The axioms of CN are the Peano axioms (say), and the logic is

classical. LS is the language of a first-order relevant logic, with two binary predicates,

= and 2; and set-abstracts. I write the conditional connective as!; a � b is defined

as :a _ b: The axioms of CS are those of naive set theory:

• x 2 fy : aðyÞg $ aðxÞ (for every a)

• 8xðx 2 y$ x 2 zÞ ! y ¼ z

The underlying logic of CS is an appropriate relevant logic, which makes the axioms

inconsistent but non-trivial.8

qSN = /. qNS = FN, and tNS is the natural translation. In particular:

7 Possibly, other translations might be appropriate. Thus, ‘!’ here might be replaced by ‘�’, where

A � B is :A _ B:
8 See Priest (1987), ch. 10, and Priest (2002), Sect. 8.
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• 0 is translated into fx : :9yx 2 yg
• Sxy is translated into y = x[{x}

Connectives remain themselves (so that � is translated into �), and quantifiers are

restricted to x, defined as:

•
T
fz : 0 2 z ^ 8x8yððx 2 z ^ SxyÞ ! y 2 zÞg

so that Axa and Vxa are translated as 9xðx 2 x ^ aÞ and 8xðx 2 x � aÞ;
respectively.9 We may depict the structure as follows:

The output contains all the theorems of naive set theory. Given the standard

definitions of numbers, the logic of CS will be too weak to prove all the theorems of

Peano Arithmetic. However, these may be proved in CN and then allowed to

permeate into CS. These theorems, then, are not only part of the eventual output, but

may be appealed to in CS to establish results about sets that involve natural numbers.

3.3 Example 3: Obtaining Observation Data from a Theory

In the previous two examples, the output chunk had a logic weaker than the chunks

which delivered information into it. In the next two examples, the output chunk has

a stronger logic. Suppose that one has a scientific theory couched in language that is

partly observational and partly theoretical. Suppose that the theory uses some non-

classical logic, say quantum logic, but that one wants to use its observable

predictions, and, moreover, to reason classically using them. Then one may allow

these to permeate into a classical output chunk.

More specifically, let there be two chunks, CT and CO. CO is the output chunk. LT

is a first-order language. We suppose that its constants are divided up (disjointly)

into the observational, CO; and theoretical CT : Similarly, its predicates are divided

up (disjointly) into the observational, PO; and theoretical PT : The observational

sentences, O; are the atomic sentences formed from CO and PO; together with their

negations. CT has certain axioms, and an underlying quantum logic. CO is a first-

order language which contains only the constants CO and predicates PO: It has

axioms that involve these, and the underlying logic is classical. qOT = /. qTO ¼ O;
and tTO is the identity translation. So the set-up is as follows:

9 I assume that these are the natural translations. They are, after all, what the restricted quantifiers express

in their original classical context. But I could imagine situations where the ‘�’ should be replaced by

‘!’, or even some entirely different conditional, such as that of Beall et al. (2006).
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Whether we interpret the quantum theory realistically or instrumentally, the

structure allows us to make use of its observable predictions, reasoning about them

classically in the output chunk.

3.4 Example 4: Extracting Consistent Information from an Inconsistent Theory

In the final example, we have an inconsistent theory, and the C&P mechanism is

used to extract consistent information, on the basis of which we may then reason

classically. Thus, suppose that we have an inconsistent theory of truth, based on

some paraconsistent logic. This will tell us that some things of the form T ah i and

T :ah i hold (where T is the truth predicate and h:i is some name-forming device).

Suppose, however, that we think that statements of the form T ah i are themselves

consistent. We can allow them to permeate into another chunk, where we can reason

classically about them.

More specifically, let there be two chunks, CP and CC. CC is the output chunk. CP

is a naive theory of truth, with the T-schema and self-reference. It is inconsistent (for

example, if k is a liar sentence, :T kh i; CP can prove T kh i; :T kh i; and T :kh i), but

non-trivial.10 LC is the same as LP, but its axioms are the empty set. (In particular, it

does not contain the T-schema.) Its underlying logic is classical. qCP = /. qPC is the

set of sentences of the form T ah i; where a is a sentence of the language, and tPC is

the identity map.11 So the setup is as follows:

The structure allows us to make use of a consistent part of the output of the

inconsistent theory or truth, but then to go on and reason classically using it.

4 Conclusion

The four examples illustrate some of the possible applications of C&P to reasoning

that requires logical pluralism. The C&P structures involved are all fairly simple.

For example, information flow is only ever one-way in them. But they suffice to

10 See Priest (1987), ch. 9, and Priest (2002), Sect. 8.
11 A somewhat different permeability relation could allow through all the consistent consequences of CP

(i.e., all those provable a for which :a cannot also be proved). In general, though, this would make the

filter highly non-effective.
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show how the structure makes possible reasoning that employs more than one logic,

and in a sensible, controlled, way.12
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