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In this note, I will make a few comments on a principle concerning sets which
I will call the Axiom of Countability. Like the Axiom of Choice, this comes
in a weaker and a stronger form (local and global). The weaker form is a
principle which says that every set is countable:

WAC ∀z∃f(f is a function with domain ω ∧ ∀x ∈ z∃n ∈ ω f(n) = x)

(The variables range over pure sets—including natural numbers. ω is the set
of all natural numbers.) The stronger form is that the totality of all sets is
countable:

SAC ∃f(f is a function with domain ω ∧ ∀x∃n ∈ ω f(n) = x)

The stronger form implies the weaker. Any set, a, is a sub-totality of the
totality of all sets. Hence, if the latter is countable, so is a. So I focus mainly
on this.

Let us start by thinking about the so called Skolem Paradox. Take an ax-
iomatization of set theory, say first-order classical ZF. This proves that some
sets, and a fortiori the totality of all sets, are uncountable. Standard model
theory assures us that there are models of this theory (in which ‘∈’ really is
the membership relation) where the domain of the model is countable. There
is a function which enumerates the members of the domain. It is just one
which has failed to get into the domain of the interpretation. Why should
we not suppose, then, that the universe of sets really is countable? From
the perspective of the metatheory, ZF+ (ZF + ‘There is a model of ZF’), the
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countable model is not the intended “interpretation”. Our metatheory tells
us that the domain of all sets is actually uncountable. But ZF+ itself has a
countable model, so the situation is exactly the same with this. We might
suppose that the countable model of this tells us how things actually are.
True, in the metatheory we are now working in, ZF++ (ZF+ + ‘There is a
model of ZF+’), that model will appear not to be the intended model. But we
can reply in the exactly same way. Clearly, the situation repeats indefinitely.
And at no stage are we forced to conclude that the universe of sets is really
uncountable. We will always have a countable model at our disposal.

Indeed, it is not just the case that there is nothing that will force us to
conclude that the universe of sets is really uncountable. There are certain
conceptions of sethood which actually push us to that conclusion. Thus,
suppose that one takes the not implausible view that sets are simply the
extensions of predicates (or some predicates anyway).1 Then, given that the
language is countable, so it the universe of sets.

Now, imagine that the history of set theory had been slightly different.
Suppose that set theory had been investigated for a few years before Cantor,
and that those who investigated it took sets to be simply the extensions of
predicates. Suppose also that the theory had actually been formalised, say
by some mathematican, Zedeff. The (strong) Axiom of Countablity, being an
a priori truth about sets, was one of the axioms. Things were bubbling along
nicely, until Cantor came along and showed that within the theory one could
prove that some sets are uncountable. The theory was inconsistent. In this
history, Cantor was playing Russell to Zedeff’s Frege. We can imagine that
the community was dismayed by this paradox, and started to try to amend
the axiomatization in such a way as to avoid paradox. Perhaps, indeed, the
hierarchy ZF, ZF+, ZF++, ... emerged—rather as the hierarchy of Tarski
metalanguages emerged in our actual history.

In actual history, set theory was consistentized in response to Russell’s
paradox and related ones. However, as we now know, there is an alternative:
maintain the naive comprehension schema, allow the paradoxes, and deploy
a paraconsistent logic, which quarantines the paradoxes. The same was an
option in our hypothetical history; maintain the Axiom of Countability, the
paradoxes it generates, and deploy a paraconsistent logic.

Now back to reality. Is there such a theory? There is. We can show
this with an application of a technique of paraconsistent logic called the Col-

1See Priest (2006), ch. 10. See also Myhill (1952).
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lapsing Lemma. Take a first-order language (without function symbols) for
LP. Let M = 〈D, δ〉 be any interpretation for this. Let ∼ be any equivalence
relation on D.2 If d ∈ D, let [d] be its equivalence class under ∼. We define a
new interpretation (the collapsed interpretation),M∼ = 〈D∼, δ∼〉, as follows.
D∼ = {[d] : d ∈ D}. For any constant, c, δ∼(c) = [δ(c)]. For any n-place
predicate, P , 〈a1, ..., an〉 is in the extension of P in M∼ iff there are d1 ∈ a1,
..., dn ∈ an, such that 〈d1, ..., dn〉 is in the extension of P in M . Similarly
for the anti-extension of P. The collapse, in effect, simply identifies all the
members of an equivalence class, producing an object with the properties of
each of its members. The Collapsing Lemma tells us that any sentence in the
language of M (i.e., the language augmented with a name for each member
of D) which is true in M is true in M∼; and any sentence false in M is false
in M∼.3

To apply this: let the language be the language of first-order ZF (without
set abstracts). Take a (classical) interpretation of this, M , which is a model
of ZF. Let k be any countable set in D. (Here, and in what follows, I mean
countable—or uncountable—in the sense of M .) Consider the equivalence
relation on D which identifies all uncountable sets with k, and otherwise
leaves everything alone. That is, x ∼ y iff in M :

• x and y are uncountable

• or (x is uncountable and y is k)

• or (y is uncountable and x is k)

• or (x and y are both k)

• or (x and y countable sets distinct from k, and x = y).

Now consider the collapsed model obtained with ∼. By the Collapsing
Lemma, this is a model of ZF. But in M∼ every set is countable. For every
constant, c, that denotes a countable set in M :

• ∃f(f is a function with domain ω ∧ ∀x ∈ c∃n ∈ ω f(n) = x)

is true in M , and so by the Collapsing Lemma, in M∼. Since every member
of D∼ has such a name in M∼, we have the WAC in M∼:

2If the language were to contain function symbols, ∼ would also have to be a congruence
on their interpretations.

3For full details, including the proof, see Priest (2006), 16.8.
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• ∀z∃f(f is a function with domain ω ∧ ∀x ∈ z∃n ∈ ω f(n) = x).

A slightly different equivalence relation delivers an interpreation which
verifies SAC. Let k now be the object which is Vω (the sets of rank ω) in M .
Consider the equivalence relation which identifies all things of rank greater
than ω with Vω, and leaves everything else alone. That is, x ∼ y iff in M :

• x, y ∈ Vω and x = y

• or x, y /∈ Vω.

Again, this is a model of ZF. k ∪ {k} is countable in M . Let i be the name
of the function that enumerates it, and let e be the name of any member of
k ∪ {k}. Then in M it is true that:

• i is a function with domain ω ∧ ∃n ∈ ω i(n) = e.

Hence this is true in M∼. But since every member of D∼ is named by some
e of this kind, we have in M∼:

• i is a function with domain ω ∧ ∀x∃n ∈ ω i(n) = x.

Hence we have the SAC in M∼:

• ∃f(f is a function with domain ω ∧ ∀x∃n ∈ ω f(n) = x.

For good measure, M∼ is also a model of the naive comprehension schema,
∃z∀x(x ∈ z ≡ A), too. (See Priest (2006), 18.4.) If sets just are the exten-
sions of predicates, one would expect this schema to hold. I note also that
both of the models we have constructed are non-trivial. Thus, if c and d refer
to two distinct objects in D that are not involved in the collapse, c = d is
not true in the collapsed model.

What we see, then, is that there are (non-trivial) theories that contain
the (strong or weak) Axiom of Countability, plus ZF (plus, in one case, the
naive comprehension schema). If T is the set of things true in either of the
collapsed models we have constructed, T is one such theory. Within such a
theory, every set us uncountable; but, because of Cantor’s Theorem, some
sets are uncountable as well. It is Cantor’s Theorem that generates the
hierarchy of different sizes of infinity. And in this context, it is recognizably
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paradoxical. The whole hierarchy of infinities is therefore a consequence of
the paradox. The transfinite, then, is generated by the transconsistent.4

In a nuthsell: the Axiom of Countability makes perfectly good paracon-
sistent sense, even within the context of ZF. And it provides a radically new
possible perspective on the universe of sets.
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