
1 Introduction: For JLB

Paraconsistent Set Theory

Graham Priest
Departments of Philosophy.

Universities of Melbourne and St Andrews

John Bell played a pivotal role in my intellectual life. I was �rst shown the
beauty of mathematics at school, by a particularly gifted teacher. Inspired
by this, and I went up to Cambridge to read the subject. The process
was disillusioning. With only few exceptions, the lectures were dull and
boring. It was not uncommon for a lecturer to spend an hour writing on
the blackboard with his or her back to the audience. Supervisors obviously
derived pleasure from solving the problems that I could not solve, but this
was with all the emotional engament of cross-word puzzle solving. The sense
of intellectual excitement that I had experienced at school evaporated.
By the end of my undergraduate career I had decided that philosophy

was probably more interesting than mathematics, and decided that my
education might best be served by studying mathematical logic; I went off
to London to take an MSc in the subject. It was then my great good fortune
to meet John, who was lecturing on model theory in the MSc programme. I
am sure that the topic could have been made just as dull and boring as the
topics I had studied in Cambridge, but John was inspirational. The sense
of intellectual excitement in his lectures was palpable. The lectures were
crystal clear, delivered with enormous enthusiasm, and the hand-written
lecture notes that he handed out were a model of elegance. Many of us
would go off with him for coffee and a cigarette after the lecture; John would
hold forth on the things he loved, which of course included mathematics. I
was reinspired.
At the end of the MSc, I decided to do a PhD, and asked John to be

my supervisor. The area I wanted to work on was somewhat peripheral
to John�s work, but with magnanimity, he agreed. I was a pretty self-
motivated student, and John realised that he could largely leave me to
follow my own devices. I would go and see him at the LSE once a month
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1Though I remember discussing some of the material that would become �The Logic
of Paradox� (Priest (1979)), with John and my other examiner, Michael Dummett, at my
PhD viva in Oxford. Neither, I think, saw much in it.

or so. We would have a coffee, and talk for hours; John, it must be said,
would do most of the talking. For some reason, I seem to remember, many of
the topics started with �m�: music, Mozart, morality, masochism, Marxism,
Mao Zedong... And just occasionally mathematics: he would listen to what
I was up to, make helpful suggestions, and wonder, no doubt, where it was
all going. He was the ideal supervisor for me: enthusiastic, patient, and�
though he was only a few years older than I�with a perspective of the
richness of life of which I was in awe.
Paraconsistency was only a twinkling in my eye in those days. John

persuaded his research students to go to an alternative logic conference
in Uldum, Denmark, in 1971�not alternative in the sense of alternative
logic, but politically alternative: it was organised as a protest against the
acceptance of NATO funding by the organisers of the usual UK logic con-
ference. It was listening to a talk by Moshe Machover on the philosophy of
mathematics at that conference that started me thinking about the mat-
ter. (Moshe was another of my lecturers for the London MSc, and in his
own way, just as inspirational as John.) Virtually nothing about paracon-
sistency made its way into my thesis. Nonetheless, it was clear that my
interests�driven as they were by a mathematical nominalism�were un-
orthodox even in those days. John�s mathematical interests were in fairly
mainstream areas of mathematical logic, but he never tried to push me into
those. He was always happy to engage with and encourage things less or-
thodox. I suspect it appealed to the subversive in him. At one stage of my
candidature, Imre Lakatos learned that there was someone with interests in
the philosophy of mathematics working in the Mathematics Department,
and insisted that I immediately transfer to the Philosophy Department.
John protected me from the Lakatosian imperialism.
That was all many years ago. After I �nished the doctorate, I left Lon-

don. But John and I have remained good friends over the years, though
living on different continents. My interests have since became even more
heterodox. Exactly what he thinks of paraconsistency now, I am not en-
tirely sure. I suspect that he views it as bizarre, though always with a deep
chuckle in his voice and glint in his eye. Anyway, the rest of this essay is
dedicated to John. Serve him right.
What I will discuss here is paraconsistent set theory. Set theory, at

least, is a topic close to John�s heart... Speci�cally, I will discuss the shape
of an acceptable paraconsistent set-theory. I will review what is currently
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2 Paraconsistent Set Theory: Background

What follows is essentially Chapter 18 of the second edition of Priest (1987). I am
grateful for the permission of Oxford University Press to republish the material.
One might also want to add an appropriate version of the Axiom of Choice to these.

There are, however, ways of obtaining the Axiom from unrestricted comprehension. One
way is to use the machinery of Hilbert�s -calculus. (See, e.g., Leisenring (1969), pp.
105-7.) Another, much more radical, way is to take in an absolutely unrestricted
form which allows to contain � � free. This delivers the Axioms of Choice (see Routley

known about the matter, and suggest some new ideas. There are, it must
be confessed, as many questions as answers. At the end of the essay I will
apply the discussion to another important issue for paraconsistency: that
concerning its metatheory�and especially the model-theoretic de�nition of
validity. The connection is, of course, that such a metatheory is formulated
within set theory.

The problem posed by Russell�s paradox and its set-theoretic cousins may
be thought of as generated by two factors. First: an unrestricted abstraction�
or comprehension�principle of set existence, which allows an arbitrary
condition to specify a set. Second: various principles of logic which al-
low certain instances of this (or their conjunction) to entail everything.
Since the discovery of these paradoxes, the orthodox reaction has been to
maintain the principles of logic in question, but reject the unrestricted com-
prehension principle. This strategy gives type theory, Zermelo-Fraenkel set
theory, and so on.
There is, however, another possible strategy: maintain the comprehen-

sion principle and reject, instead, some of the principles of logic in question.
There are various ways one may do this, but the one which will be concern
us here is the paraconsistent way. Allow for the set theory to entail contra-
dictions, but reject the principle , or to give it its
more colourful name, Explosion, , and hence obtain a theory
that is inconsistent but non-trivial.
How should one do this? Part of the answer is easy. A paraconsistent

set-theory can naturally be thought of as a theory that endorses the two
axioms (or one axiom and one axiom schema):

where does not occur free in . The rest of the answer is not easy,
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(1977), p. 924 f. of reprint) whilst, surprisingly enough, maintaining non-triviality (see
Brady (1989)).
See Priest (1987), 6.2.
For a survey of paraconsistent logics, see Priest (2002).

however. What is the appropriate underlying logic? In particular, what
notion of conditional is being employed in and ?
Paraconsistency gives us several choices in answering this question. In

making the appropriate choice, there are two constraints that need to be
borne in mind. First, the resulting theory should not allow us to prove too
much; second, it should not allow us to prove too little.
For the �rst: although using a paraconsistent logic allows isolated con-

tradictions to be accepted, we still do not want wholesale contradiction.
In particular, if were provable, the theory would be quite use-
less. And even though contradictions do not imply everything, there may
still be arguments delivering triviality. A notorious one is Curry�s paradox.
Suppose that the conditional of the logic satis�es both and
Contraction (or Absorption): . Triviality then
ensues.
This fact puts fairly severe constraints on an appropriate underlying

logic. In fact, it rules out very many paraconsistent logics. For example, it
rules out da Costa�s well known systems. It also rules out many of the
best known systems of relevant logic, such as . Not everything is ruled
out, though, as we shall see.
But before we turn to this, let us consider the other constraint: not too

little. It is easy enough to choose an underlying logic for paraconsistent set
theory that does not give triviality. Choose the null logic (in which nothing
follows from anything)! This is obviously not very interesting. A minimal
condition of adequacy on a paraconsistent set-theory would seem to be that
we can get at least a decent part of standard, orthodox, set theory out of it.
We might not require everything; we might be prepared to write off various
results concerning large cardinality, or peculiar consequences of the Axiom
of Choice. But if we lose too much, set-theory is voided of both its use and
its interest.
It should be remembered here, that paraconsistency, unlike intuitionism,

has never been a consciously revisionist philosophy. The picture has always
been that classical mathematics, and the reasoning that this embodies, is
perfectly acceptable as long as it does not stray into the transconsistent.
It is only there that it goes awry. So the unproblematically consistent bits
of orthodox set-theory, at least, ought to be delivered by a paraconsistent
set-theory.
The results of this second constraint are in some tension with the results
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Adopting the material strategy in some form goes way towards meeting Goodship
(1996), who advocates taking the main conditional of both the Comprehension Principle
and the -schema to be material. Would treating the conditionals in the two schemas
show the paradoxes of self-reference to be of different kinds? No. They still all �t the
Inclosure Schema (Priest (1995), Part 3), and so have the same essential structure.
Priest (1987), ch. 5.
See Priest (2001), 8.3.

of the �rst. Put crudely, the matter is this. If we weaken our logic in a way
that is sufficient to avoid triviality, we weaken it so much that it fails to
deliver much set theory that we want to keep. We will see how this tension
plays out in the following discussion.

As we have just seen, an underlying logic for a paraconsistent set-theory
must invalidate either or Contraction. Both are live options.
Let us start with the rejection of . There are various ways
that one can arrange for to fail in a paraconsistent logic, but
undoubtedly the most natural is to take the conditionals (and bicondition-
als) in and to be material. That is, is simply as

. ( is de�ned in the usual way as .) In nearly
every paraconsistent logic, material detachment fails: . I
will call this the . (The strategy does not, of course, mean
that the language employed does not contain different kinds of conditional.
For example, it may contain a relevant and detachable conditional as well�
though it need not.)
A simple and natural choice here is the logic . A sound and complete

tableau system for this is as follows. Lines are of the form or . A
tableau for the inference starts with the lines:

...

The rules are as follows:
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Here, and are any terms on the branch, is a constant new to the branch,
and � � can be disambiguated consistently either way. The closure rules
for a branch are two:

(The second of these enshrines the Law of Excluded Middle.)
The paraconsistent set-theory that this logic produces has a number of

interesting features. It is provably non-trivial. It validates all those ax-
ioms of that are instances of (of course). It validates the Axiom of

6

The rule for means that this can be introduced at any time.
It might be thought that without detachment the axioms cannot be shown to be

inconsistent. This is false, though. An instance of is . Whence
we have ; and cashing out the conditional in terms of negation and
disjunction gives . More generally, whenever is a classical consequence of
, there is a such that follows from . (See Priest (1987), 8.6.) Hence,
any classically inconsistent theory is inconsistent in this logic also.
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4 The Relevant Strategy

modus ponens
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For details of all this, see Restall (1992). Note that he de�nes � � as �
�.
A semantics with respect to which it is sound can be found in Priest (1987), 2nd. ed.,

19.8.
The rules for identity are an exception. The rules for this are:

In�nity, but not the Axiom of Foundation. It can also (unlike ) demon-
strate the existence of a universal set. What theorems of �beyond
the axioms�it can (or cannot) establish, is as yet a largely unanswered
question. But the failure of material detachment means that most of the
natural arguments fail. Whilst this does not meant that there are no unnat-
ural arguments for the same conclusions, the prospects look rather bleak.
The failure of detachment is a singular handicap. For the same reason, any
other way of pursuing the material strategy does not look promising.
A more promising strategy is to look at the consequences of the axioms,

not in , but in the non-monotonic extension . (See Priest (1987),
2nd ed., ch. 16.) The results of this approach are presently unknown.

A second, and perhaps more plausible, strategy is to use a conditional
in a logic which validates , but not Contraction. The most
plausible candidate for this is a relevant logic weaker than , one of the

logics, as they are sometimes called. The following is a
tableau system for such a logic. Lines are now of one of two forms. One
is or , where is a natural number (thought of as representing
a world). Premises and conclusion take the number . The other is ,
where , and are natural numbers (� � representing a ternary accessibility
relation, as is standard in the semantics for relevant logics). The rules for
are all present, except that a natural-number world-parameter, , is

added uniformly. Thus, for example, the rule for is:
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It is easiest to de�ne the conditional, , in terms of a non-contraposing
conditional, . Thus, is . The rules for
are as follows. When ( is an impossible world):

In the left hand rules, and are any numbers on the branch. In the right
hand rules, and are new to the branch.
When ( is a possible world), the rules simplify to:

In the left hand rules, is any number on the branch. In the right hand
rules, is new to the branch.
The closure rules are now:

(So the Law of Excluded Middle is guaranteed only at the base world.)
Naive set-theories based on relevant logics such as this are known to be

inconsistent but non-trivial. Indeed, the logic may be strengthened in var-
ious ways, and this is still true�though not, of course, with Contraction.
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Much of this is spelled out in Routley (1977), section 8.
This is not the only sort of problem. Various natural arguments require the use of

principles that involve nested s, such as Permutation, .
The logic just described does not contain this principle. Whether it can be added whilst
maintaining non-triviality is not known. There is certainly triviality in the area. See
Slaney (1989).

Thus, this relevant set theory satis�es the �rst constraint. What of the
second?
To answer this question (at least to the extent that the answer is known),

it is useful to divide set theory into two parts. The �rst comprises that basic
set-theory which all branches of mathematics use as a tool. The second
is the more elaborate development of this, which includes trans�nite set
theory, as it can be established in , �higher� set theory.
The theory is able to provide for virtually all of basic set theory�

Boolean operations on sets, power sets, products, functions, operations on
functions, etc. (I will return to the reason for the quali�cation �virtually�
in a moment.) Thus, for convenience, let the language be augmented with
set-abstract terms. We may de�ne the Boolean operators, , and
as , and , respectively,
and as . We can then establish the usual facts
concerning these notions.
How much of the more elaborate development of set-theory can be

proved is not currently known. What can be said is that the
proofs of a number of results break down. One thing we obviously lose is
that kind of argument which appeals to vacuous satisfaction. Thus, for ex-
ample, suppose that we wish to establish by trans�nite
induction on the ordinal . We can no longer argue in the basis case that
since , ; but we can make the zero case explicit, and
perform the induction on . The �rst disjunct
must then always be considered as a special case. Things not so easy to
reconstruct are arguments employing , such as Cantor�s Theorem.
Where is an assumption made for the purpose of , we may well
be able to establish that , for some , where is the
conjunction of other facts appealed to in deducing the contradiction (such
as instances of ). But contraposing and detaching will give us only

, and we can get no further. Even given , the failure of the dis-
junctive syllogism prevents us from obtaining . Much remains to be
done in investigating higher set-theory in this context.
Let me now return to the quali�cation �virtually�. Problems arise with

the empty set. There can be no set, , such that for every and :
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For let be and be . Then, (1) and (2) together give us:
. then gives ,

and the theory is not paraconsistent.
If we de�ne as , then this clearly satis�es (1), but it does not

satisfy (2). Alternatively, if we de�ne as then it is easy
enough to show that this satis�es (2), but not (1). It is provably the case
that both and have no members. One cannot, though, show that
they are identical. For . Generally
speaking, one cannot expect the global structure of the universe of sets to
be a Boolean algebra, as it is classically (albeit the case that, classically,
the maximum element of the algebra and some set-theoretic complements
are proper classes). What one will have, instead, is a De Morgan algebra.
This might, perhaps, be something that can be accepted. Boolean alge-

bras are, after all, just special cases of De Morgan algebras. But we are not
�nished yet. It is not only the empty set that has multiple dopplegangers;
so does the universal set. In fact, all sets do. For let be an arbitrary
truth; then is not valid (from left to right).
Thus, even though and have the same members, we will
not have . What has gone wrong at this point is clear.

notwithstanding, the entities in question are not extensional. Nor is
this an accident; the identity conditions of the entities in question are given
in terms of , and this is an intensional functor, more at home in giving
the identity conditions for properties than sets.
This suggests changing the biconditional in . A natural thought is

to replace it with the material biconditional, . Natural as this thought
is, the strategy does not work. For . Now let be any
provable contradiction. Then for any , . By , it now follows
that ; there is only one set. (Note that this argument does
not go through in the material strategy because the material conditional
does not detach to give the identity.)
There is another possibility. To see this, consider restricted quanti�ca-

tion for a moment. It is natural to express �all s are s� using a condi-
tional, thus: . If is a standard relevant conditional, then
the inference:

Everything is ; hence all s are s

fails, since it depends on the validity of the inference
. Yet inferences of this form are frequently appealed to when employing
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See, e.g., Dunn and Restall (2002), p. 10. Sometimes, depending on the context,
gets interpreted as the conjunction of all logical truths.
For a general discussion of restricted quanti�cation in relevant logic, see Beall

(200+), which suggests the use of a different, but closely related, kind of enthymematic
conditional.

restricted quanti�ers of the kind in question. If we interpret as , the
material conditional, the inference is valid enough. But now the inference:

All s are s; is an ; hence is a

fails, since it employs the Disjunctive Syllogism, .
This is even worse.
A solution to this problem is to use another sort of conditional. In many

formulations of relevant logics, there is a logical constant, , which may be
thought of as the conjunction of all truths. (So is true at the base world,
, and any other world at which all the things true at the base world are
true.) The appropriate tableau rules for are:

It is not difficult to check that these validate the following inferences:

We may now de�ne an enthymematic conditional, , in terms of :

is

and use this as the conditional involved in restricted universal quanti�ca-
tion. Thus, �All s are s� is to be understood as . We
now have:

Hence . And
. Hence . So both the inferences 1 and

2 are valid.
Now return to set-theory. It is natural to hear � is a subset of �

as �all members of are members of �, that is, on the present account,
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. Let us de�ne in this way. We may now take
to be , where is the biconditional

corresponding to . This is equivalent to .
Using instead of in overcomes many of the problems we noted.

Thus, for example, there is only one set that contains everything.
. So . Moreover, let

be any truth. Then we have , so . Since
, we have . The structure of sets is

still not a Boolean algebra since the empty set is still not unique. We do
not have . Hence, we do not have
or, therefore, . But the empty set is enough of
an oddity that this may not matter too much. Reconstructing the reasoning
of set-theory using in and the de�nition of therefore looks much
more promising.

I have discussed the material strategy and the relevant strategy for naive
set theory. These do not exhaust the possibilities. Let us return to the
axiomatisation that employs a material conditional uniformly. Call this
. (And suppose that the language contains just the standard extensional

connectives and quanti�ers, as in the usual formulations of �and no
set abstracts.) This time, we will consider, not what is provable in , but
what the models of are. has many models, many of which are clearly
pathological. For example, there is the model with but a single element,
which both is and is not a member of itself. (This veri�es the trivial theory.)
But has many other models. We can construct some of these with

the Collapsing Lemma. (See Priest (1991) and (1987), 2nd. ed., ch. 16.)
Let be any model of . Let be any ordinal in , and
be the initial section of the cumulative hierarchy, , in . (That is, the
pair satis�es the formula � is an ordinal and � in .) De�ne
a relation, , on as follows:

( and are in (in ) and ) or ( and are not in (in ))

This is obviously an equivalence relation. (Since there are no function sym-
bols, it is vacuously a congruence relation too.) It leaves all the members
of alone, but identi�es all other members of . Construct the collapsed
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The fact that is a model of is a special case of a more general lemma, to be
found in Restall (1992).
In fact, behaves just like the set of all non-well-founded sets, given Mirimanoff�s

paradox. It is well-founded, but it is also a member of itself, so is not well-founded.)

interpretation, , with respect to this equivalence relation.
The Collapsing Lemma tells us that is a model of .
But something else also happens. Let me use boldfacing for names.

Then � � refers to in , and in . For all , the sentence
has is both true and false in . For if (in ) is of rank less

than , is true in , and so in ; and if not, there is some
which is also not of rank less than (e.g., ) such that is in . (I am
not, here, assuming the Axiom of Foundation.) Since has been identi�ed
with in , is true in . Whatever is, there are elements
which do not have rank less than such that is not a member of them
(e.g., , where is distinct from and has rank greater than ). Since
these have been identi�ed with in , is also false in . Now
consider any sentence of the form . The left side is both
true and false. Hence the biconditional is true in ( ).
So is true, as is . So is a model of .
It is a model of as well, of course, since this is in . Hence, is a
model of naive set theory (materially construed).
In fact, we can obtain more than this. Suppose that in there are

inaccessible cardinals. Let be the least such, and be a greater one.
Take to be . Since the sets of rank less than , and than ,
remain unaffected in the collapse, both of these are consistent substructures
of which are models of . Moreover, any theorem of with its
quanti�ers relativised to (so that becomes , where � �
refers to ; and similarly for ) holds consistently in . (This is not
true of , since this set itself behaves inconsistently. ) That is, is a
consistent inner model of (which shows that the theory of is highly
non-trivial).
To take stock, what we have established is that there are interpretations

that:

are models of and

are models of

contain the cumulative hierarchy (at least up to ) as a consistent
inner model.
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Some of these can be obtained by other applications of the Collapsing Lemma. Dif-
ferent methods of constucting models of inconsistent set theory, some of which also model
, are discussed in Libert (2003).
Criticising the strategy under discussion here, Weir (2004), p. 398, says: �It will not do

to say ... that the models which ... [do not have the desired properties] are �pathological�
or �unintended�. All the dialetheist�s models are unintended in the sense that
they do not capture anything like the full structure of the naive universe of sets. This
compares unfavourably with the unintended models of �rst-order number-theory: they at
least contain the �real� structure of numbers.� This is simply question-begging. The thesis
is precisely that one of these models does capture the full structure of the universe of sets.
(Or, if there are many equally good models, then each captures the structure of an equally
good universe.) From the dialetheic perspective, it is precisely the cumulative hierarchy
that is an incomplete fragment of the universe of sets. And the models in question do
contain the cumulative hierarchy as a fragment (at least up to an inaccessible cardinal).
In particular, the argument constructing the interpretation above can be carried

out in , and so is perfectly acceptable.

We may therefore suppose that the true interpretation of the language of set
theory has these properties. This is an appealing picture. The cumulative
hierarchy (up to ) is a perfectly good, consistent, set-theoretic structure;
but it does not exhaust the universe of sets. There may be non-well-founded
sets (such as the set of all sets) and inconsistent sets, such as the set of all
sets that are not members of themselves. The universe of sets is just much
richer than orthodox set theory takes it to be.
Of course, the model that we actually constructed using the Col-

lapsing Lemma is still pathological from this perspective. It contains only
one inconsistent set, , which has to do duty for all inconsistent and
non-well-founded sets. There are undoubtedly other models (the details of
whose natures require further investigation). It should be remembered
that, even in classical logic, set-theory�and every other theory with an in-
�nite model, but an �intended interpretation��has an absolute in�nity of
pathological models. Specifying the correct interpretation is always a fur-
ther issue. The model at least suffices to demonstrate the possibility
of interpretations of naive set-theory which have the above properties.
And to return, at last, to the question of what to make of the theo-

rems of orthodox set theory, , on this approach. The answer is obvious.
Since the universe of sets is a model of (as well as naive set theory),
these hold in it. We may therefore establish things in in the standard
classical way, knowing that they are perfectly acceptable from a paracon-
sistent perspective. We cannot, of course, require the theorems of to
be consistently true in that universe; but if, on an occasion, we do require
a consistent interpretation of , we know how to obtain this too. The
universe of sets has a consistent substructure that is a model of .

14



26

27

28

26

27

28

6 Metatheory of Paraconsistent Logic

Rescher (1969), p. 229, documents this claim, though he does not endorse it.
See, e.g., Dummett (1977), ch. 5, esp. p. 197.
For further discussion, see Priest (1987), ch. 8.

Let us turn, �nally, to the issue of paraconsistent model-theory. If the para-
consistent strategy for set theory is to be anything more than an intellectual
exercise, the underlying logic used must, in some sense, be the right one for
reasoning about sets. Hence arise familiar debates about which logic is cor-
rect, and why. A frequent objection made against paraconsistency in this
debate goes as follows. Paraconsistent logics have metatheories. In partic-
ular, they have appropriate semantics, proof systems, and corresponding
soundness and (hopefully) completeness results. Now the logic in which
such proofs are carried out must be classical, non-paraconsistent, logic.
This shows that paraconsistent logic cannot be maintained as the correct
logic.
The argument is far too swift. For a start, the logic of the metatheory

of a theory need not be classical. For example, an intuitionist metatheory
for intuitionist logic is well known. Is there a metatheory for paraconsis-
tent logics that is acceptable on paraconsistent terms? The answer to this
question is not at all obvious. First, the standard proofs in the metathe-
ories of paraconsistent logics are usually given, as are most mathematical
proofs, in an informal way. The question, then, is how to interpret the
proofs formally. A normal assumption is that the proofs are carried out
using classical logic. And indeed, this would seem to be sufficient for the
purpose. This point is not de�nitive, however. Most paraconsistent logics
are generalisations of classical logic in one way or another. In particular,
they coincide with classical logic in those cases (models) which are consis-
tent (i.e., in which all formulas behave consistently). Hence, if an informal
argument concerns a consistent situation, and can be regimented using clas-
sical logic, it is perfectly acceptable for a paraconsistent logician. Can a
paraconsistent logician, or at least, one who subscribes to paraconsistent
set theory, look at the metatheoretic arguments concerning paraconsistent
logic in this way? The answer, unfortunately, is �no�. For metatheoretic
constructions are carried out in set theory; and paraconsistent set theory
is not consistent.
In the model-theory of paraconsistent logic, we must therefore use para-

consistent set-theory, however that is best construed. To what extent
model-theory can be developed on the relevant strategy for naive set-
theory is still an open question. But the model-theoretic strategy for naive
set-theory provides a simple way of accommodating paraconsistent model-
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theory. One may think of the metatheory of the logic, including the ap-
propriate soundness and completeness proofs, as being carried out (as we
know it can be) in . According to the model-theoretic strategy, the
results established in this way can perfectly well be taken to hold of the
universe of sets, paraconsistently construed. The paraconsistent logician
can, therefore, simply appropriate the results.
It might be thought that this approach to the metatheory of paracon-

sistent logic suffers from a problem. In the material and model-theoretic
strategies for paraconsistent set-theory, the relationship between the premises
and the conclusion of a valid inference is expressed by a material con-
ditional. Thus, simplifying to the one-premise case for perspicuity, and
writing the relation � holds in � as � �, an inference from to is
valid iff:

for all every interpretation,

Now, the material conditional does not support detachment. Hence an
inference can be valid, yet this does not licence the detachment of the
conclusion from the premise. Surely this deprives the notion of validity of
its punch?
No. The disjunctive syllogism is perfectly acceptable provided that the

situation is consistent. Provided that we do not have and ,
we can get from to . In particular, then, provided that is in
part of the universe of sets that is consistent (the cumulative hierarchy, or
a sufficiently generous part thereof), we have business as usual. (Note: this
does not mean that the set of things made true by is consistent. �
and � is quite different from � and �.) If is a set outside
this part of the universe, matters are different. Thus, we may expect that
there is an interpretation, , that is in accord with the actual, in the sense
that for any , iff . One should not expect this interpretation to
be in the hierarchy. Appropriate techniques of diagonalisation will give us
sentences, , such that and . In such cases, even though
holds, the fact that (i.e., ) will not allow us to detach (i.e.,
). However, such s will be unusual. In standard cases will

provide a licence to get from to .
It might still be thought odd to have the validity of a deductive inference

grounded in a defeasible inference such as the disjunctive syllogism. But a
little thought should assuage this worry. The difference between a material

and a relevant is not as great as might
be thought in this context. Both are simply true (or false) .
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7 Conclusion: The Shock of the New

Inference, by contrast, is an . Given the premises of an argument an
inference is a to a new state. No number of truths is the same thing as
a jump. (This is the moral of Lewis Carroll�s celebrated dialogue between
Achilles and the Tortoise. ) None the less, truths of a certain kind may

the jump, in the sense of making it a reasonable action. There is
no reason why a sentence of the form may not do this just as much
as one of the form . It is just that one of the latter kind always does,
whilst one of the former kind does so only sometimes.
If it is still not clear how a sentence can function in this way, consider

sentences of the form:

You promised to do

The truth of (*) normally grounds doing , in the sense of making it rea-
sonable to do it. But, to use a celebrated example, suppose that (*) is true,
where the in question is the returning of a weapon to a certain person.
And suppose that that person comes requesting the weapon, but you know
that they intend to use it to commit suicide. Then the truth of (*) does
not, in this context, ground the action. Just as with validity and the ma-
terial conditional, the truth of a sentence of a certain kind may ground an
appropriate action in normal circumstances, but fail to do so in unusual
circumstances.
This objection dealt with, there would seem nothing to prevent the para-

consistent logician from simply appropriating all the classical metatheoretic
results in the way explained. The appropriation might be thought to have
all the charms of theft over honest toil (as Russell said in another context);
on the other hand, why reinvent the wheel?

At various times in its history, mathematics has been shocked by the dis-
covery of new kind of entity: irrational numbers, in�nitesimals, trans�nite
sets, and so on. The reception by the mathematical community of these
entities has often been controversial and contentious; and the discovery has
always been followed by a process of rethinking mathematical reasoning in
the light of these entities and their properties. The discovery of inconsis-
tent objects, such as the Russell set�of all those sets that do not contain
themselves�is the most recent, and perhaps the most contentious, episode

17



∈

ZF

References

Journal of Philosophical
Logic

Mind

Elements of Intuitonism

Philosophical Analysis

Handbook of Philosophical
Logic

Australasian Journal of Philos-
ophy

Mathematical Logic and Hilbert�s -Symbol,

Logic and Logical Philosophy

Journal of Philosophical Logic

of this kind; and we are still in the process of thinking through its rami�ca-
tion for mathematical reasoning. In mathematical revolutions of this kind,
it is always important to preserve the central parts of previous mathemat-
ical thought. What I have been engaged in here is a contribution to this
project.

[1] Beall, JC, Brady, R., Hazen, A., Priest, G., and Restall, G. (200+),
�Restricted Quanti�cation in Relevant Logics�,

, forthcoming.

[2] Brady, R. (1989), �The Non-Triviality of Dialectical Set-Theory, ch. 14
of Priest, Routley, and Norman (1989).

[3] Carroll, L. (1895), �What the Tortoise Said to Achilles�, 4, 278-
280.

[4] Dummett, M. (1977), , Oxford: Oxford Uni-
versity Press.

[5] Dunn, J. M. (1988), �The Impossibility of Certain Second-Order Non-
Classical Logics with Extensionality�, pp. 261-79 of D. F. Austin (ed.),

, Dordrecht: Kluwer Academic Publishers.

[6] Dunn, J. M., and Restall, G. (2002), �Relevance Logic�, pp. 1-128, of
Gabbay and Guenthner (2002).

[7] Gabby, D., and Guenthner, F. (eds.) (2002),
, second edition, Vol. 6, Dordrecht: Kluwer Academic Publishers.

[8] Goodship, L. (1996), �On Dialethism�,
74, 153-61.

[9] Leisenring, A. (1969),
New York, NY: Gordon and Breach.

[10] Libert, T. (2003), � and the Axiom of Choice in Some Paraconsis-
tent Set Theories�, 11, 91-114.

[11] Priest, G. (1979), �Logic of Paradox�, 8,
219-41.

18



LP

LP

RWX

In Contradiction

Studia Logica

Beyond the Limits of Thought

Introduction to Non-Classical Logic

Paraconsistent Logic:
Essays on the Inconsistent

Many-Valued Logic

Notre Dame
Journal of Formal Logic

Relevant Logic Newslet-
ter Exploring Meinong�s
Jungle and Beyond

The Law of Non-
Contradiction: New Philosophical Essays

[12] Priest, G. (1987), , Dordrecht: Martinus Nijhoff; sec-
ond, extended, edition, Oxford: Oxford University Press, 2006.

[13] Priest, G. (1991), �Minimally Inconsistent �, 50, 321-
31.

[14] Priest, G. (1995), , Cambridge University
Press; second, extended, edition, Oxford University Press, 2002.

[15] Priest, G. (2001), , Cambridge:
Cambridge University Press.

[16] Priest, G. (2002), �Paraconsistent Logic�, pp. 287-93, of Gabbay and
Guenthner (2002).

[17] Priest, G., Routley, R., and Norman, J. (eds.),
, Munich: Philosophia Verlag.

[18] Rescher, N. (1969), , New York, NY: McGraw-Hill.

[19] Restall, G. (1992), �A Note on Naive Set Theory in �,
33, 422-32.

[20] Routley, R. (1977), �Ultralogic as Universal�,
, 50-89 and 138-75; reprinted as an appendix in

, Canberra: Research School of Social Sciences,
1980.

[21] Slaney, J. (1989), � is not Curry Paraconsistent�, ch. 17 of Priest,
Routley, and Norman (1989).

[22] Weir, A. (2004), �There are No True Contradictions�, ch. 22 of G.
Priest, JC Beall, and B. Armour-Garb (eds.),

, Oxford: Oxford University
Press 2004.

19


