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1 Introduction
Many sorts of thing may be subject to limitation: how fast something can
travel; what one can say legally; what can be imagined. This talk concerns
just one of these many: logic.1 As is familiar to any student of modern logic,
there are certain things that cannot be done within logical confines. These
are the limitative theorems of classical metatheory. A list of the most familiar
would include the following, which can be broken down into two sub-groups.
(The statements are rather rough and ready, but will do for the present.)

Limitative Theorems of Metalogic

1. Church’s Theorem: first-order logic cannot be decided by an algorithm.

2. Löwenheim-Skolem Theorems: no infinite structure can be charac-
terised by a first-order theory.

Limitative Theorems of Metamathematics

1. Tarski’s Theorem: no theory can contain a truth predicate for its own
language.

2. Gödel’s first Incompleteness Theorem: no axiomatisable arithmetic can
be complete.

1Specifically, first-order logic. Second-order logic raises a number of interesting ques-
tions concerning limitations too; I will not consider these here.
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3. Gödel’s second Incompleteness Theorem: no theory of arithmetic can
prove its own consistency.

When limitation is at issue, it always makes sense to ask whether the lim-
itation is absolute or relative. For example, if a body is accelerating in a
vacuum, then, if the Special Theory of Relativity is right, it can never sur-
pass the speed of light. And this limitation is absolute: there is nothing that
can be done to take the body beyond this limit. Now consider weight-lifting.
There is a maximum weight that a person can lift, say in the Olympic Games.
We do not know what it is, but basic bio-physics assures us that there must
be such a limit. Yet if a person is allowed to take steroids or other body-
building drugs, they will certainly be able to lift more. The limit to what
can be lifted is therefore relative to drug-consumption.

Now what of the limitations of logic? Are these absolute or relative? It
is natural to suppose that they are absolute. If the bounds of logic are not
absolute, what could be?! Yet, as one reflects, one may start to wonder about
this. In particular, most of the classical limitative results involve consistency
in one way or another—if only in that many of them are standardly proved
by reductio. Now what if we may go beyond consistency—into the transcon-
sistent. Are the limitations then removed? That is the subject of this talk.
The answer to this question is complex and nuanced, and a full one cannot
be given in one lecture. What can be done, and what I will do here, is give
the outlines of an answer. Much of the talk simply surveys what is known
about the subject; but the final section strays from this safe ground, to areas
that are highly speculative.

2 Background on Paraconsistency
Of course, the question of whether the limitations of logic are relative to
consistency makes sense only if the idea that one can go beyond the con-
sistent itself makes sense. For much of the last century—if not for many
other centuries in the West—it would have been supposed that it does not.
To be inconsistent is to be incoherent. This view has been challenged, and
in my view conclusively disposed of (to the extent that anything can be in
philosophy), by work in formal logic in the last 30 years. The development of
paraconsistent logics, that is, logics in which contradictions do not entail ev-
erything, has shown that inconsistency is not to be equated with incoherence.
Inconsistent theories can have a quite determinate and non-trivial structure.
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To understand the discussion that follows one needs to have some grasp
of what paraconsistent logics are like. There are, in fact, many such logics.2
Moreover, the issue of what happens to the limitative theorems may depend
on exactly which paraconsistent logic is deployed. However, it is not my
aim here to survey all of the various possibilities; it is to show the sort of
thing that may happen once one deploys a paraconsistent logic. So let me
start by explaining just one paraconsistent logic. (In point of fact, much of
the discussion carries over to other paraconsistent logics, without too much
change.) This is the logic LP . I choose this logic partly because I am
fond of it,3 but more importantly because it is one of the simplest and most
natural paraconsistent logics. In subtle discussions of the kind that we will
be engaged in, it always helps to keep the framework simple where possible.

Take for the language that of standard first-order logic—function symbols
are optional; to keep things simple, we suppose a countable vocabulary and
eschew free variables. An interpretation, I, is a pair, 〈D, d〉, where D is a
non-empty domain (of quantification) and:

• for every constant, c, d(c) ∈ D

• for every n-place predicate, P , d(P ) = 〈d+(P ), d−(P )〉, where d+(P )∪
d−(P ) = Dn

• for every n-place function symbol, f , d(f) : Dn → D

• d+(=) = {〈x, x〉 : x ∈ D}

(Note that for any P , including identity, d+(P ) and d−(P ) do not have to
be disjoint.) d is extended so that it assigns a denotation to every term by
recursion in the usual way:

• d(ft1...tn) = d(f)(d(t1), ..., d(tn))

If A is any formula, it may be true or false (or both) in the interpretation I.
We write these as I t A and I f A, respectively, and the notions may be
defined by a joint recursion as follows:

• I t Pt1...tn iff 〈d(t1), ..., d(tn)〉 ∈ d+(P )

2For a survey, see Priest (200a). Most of the proofs of the results referred to below can
be found there.

3See Priest (1987).
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• I f Pt1...tn iff 〈d(t1), ..., d(tn)〉 ∈ d−(P )

• I t ¬A iff I f A

• I f ¬A iff I t A

• I t A ∨B iff I t A or I t B

• I f A ∨B iff I f A and I f B

• I t A ∧B iff I t A and I t B

• I f A ∧B iff I f A or I f B

• I t ∃xA(x) iff I t A(c) for some constant, c

• I f ∃xA(x) iff I f A(c) for all constants, c

• I t ∀xA(x) iff I t A(c) for all constants, c

• I f ∀xA(x) iff I f A(c) for some constant, c

In the truth/falsity conditions for the quantifiers, we assume, to keep things
simple, that the language has been augmented by constants such that every
member of D is named by one of them, if this was not already the case.
Validity is defined in the way that one might expect. Say that I is a model
of A iff I t A, and a model of a set of sentences, Σ, iff I is a model of every
member of Σ. Then:

• Σ � A iff every model of Σ is a model of A

Some comments about �. First, note that the interpretations of classical logic
are, in effect, special cases of LP interpretations, namely those in which
for every P , d+(P ) ∩ d−(P ) = φ. Hence, � is a sub-relation of classical
consequence. It is, however, a proper sub-relation: it is not difficult to check
that it is paraconsistent, that is, there are A and B such that {A,¬A} 2 B.
Though the consequence relation of LP is different from that of classical
logic, it is not difficult to prove that the logical truths of the two logics
are the same. The logic can also be furnished with a sound and complete
proof-system. The compactness theorem follows from this in the usual way.
Finally, note that the language has no conditional connective. We may define
A ⊃ B as ¬A ∨ B, as is standard in classical logic, but, as is not difficult
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to check, modus ponens for such a connective fails. One can augment the
language and the semantics with a ponible conditional in various ways, but
for present purposes this is unnecessary. The aim of the present enterprise is
to see what may happen to the classical limitative results in a paraconsistent
context, and classical theories can all be expressed in the above vocabulary.

While we are on technical preliminaries, let us get one more important one
out of the way. This is the Collapsing Lemma. Let I be any interpretation
with domain D. Let ∼ be any equivalence relation on D; write the equiv-
alence class of x as [x]. If there are any function symbols in the language,
we also require ∼ to be a congruence relation on their denotations in I. We
now define a collapsed interpretation, I∼. In effect, this simply identifies all
the members of an equivalence class into a single individual which possesses
all the properties of its members (even when these are contradictory). The
formal definition is as follows. I∼ = 〈D∼, d∼〉, where:

• D∼ = {[x] : x ∈ D}

• d∼(c) = [d(c)]

• d∼(f)([x1], ..., [xn]) = [d(f)(x1, ..., xn)]

• 〈[x1], ..., [xn]〉 ∈ d+
∼(P ) iff ∃y1 ∈ [x1], ...,∃yn ∈ [xn], 〈y1, ..., yn〉 ∈ d+(P )

• 〈[x1], ..., [xn]〉 ∈ d−∼(P ) iff ∃y1 ∈ [x1], ...,∃yn ∈ [xn], 〈y1, ..., yn〉 ∈ d−(P )

It is not difficult to check that I∼ is an LP interpretation. The Collapsing
Lemma, which can now be proved by an induction, tells us that for all A:

• if I t A then I∼ �t A

• if I f A then I∼ �f A

In other words, truth values are not lost in the collapse. In particular, there-
fore, if I is a model of some set of sentences, so is I∼.

3 Limitative Theorems of Metalogic
The foregoing material is sufficient for us to survey what happens to the
classical limitative results in a paraconsistent context. Let us start with the
results of metalogic.
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Church’s Theorem Propositional LP is decidable by simple truth-table
techniques. However, first-order LP shares its logical truths with classical
logic. Hence, it is not decidable (even without identity). Church’s theorem
therefore stands.

Löwenheim-Skolem Theorems The Löwenheim-Skolem Theorems hold for
LP . If identity does not occur in the language, they hold in a very strong
form indeed: every theory has a model of every cardinality! Consider a
trivial model of cardinality κ. This has domain of size κ, and for every n-
place predicate P , d+(P ) = d−(P ) = Dn. It is not difficult to show that this
is a model of every theory.

What happens once identity is included in the language? A standard
proof of the upwards Löwenheim-Skolem depends on an appropriate version
of the compactness theorem. This holds for LP , and can be applied in much
the usual way to show that if a set of sentences has a model of infinite
cardinality κ it has a model of every cardinal greater than κ. A standard
proof of the downwards Löwenheim-Skolem Theorem goes via the complete-
ness theorem. A straightforward modification of this proof shows that if a
set of sentences has an infinite LP model, it has a countable model (and
so a model of all infinite cardinalities). However, something even stronger
holds in LP . If a set of sentences (with no function symbols) has a model
of any cardinality, it has a model of every lower cardinality! This follows
from the Collapsing Lemma. Just take any model of cardinality κ. Consider
any equivalence relation on its domain that generates λ equivalence classes,
1 ≤ λ ≤ κ. The Collapsing Lemma tells us that the collapsed model which
this equivalence relation generates is a model of the original set of sentences,
and if λ > 1 the model is non-trivial (since some identities are not true in
the model).

What we have seen, to summarise, is that all the limitative theorems of
classical metalogic carry over to a paraconsistent context. Indeed, because of
the Collapsing Lemma, they apply in even stronger forms. The situation is
different when we turn from metalogic to metamathematics, which we now
do.

4 Limitative Theorems of Metamathematics
Let us take a first-order mathematical theory. Any appropriately strong
mathematical theory will do. For the sake of definiteness, let us take arith-
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metic. The language is the usual one. Successor, addition, and multiplication
may be represented by appropriate function symbols, ′, +, and ×, or by ap-
propriate predicates. Let m be the numeral of the number m. We suppose
that we have a gödel coding for the language. If A is a formula, let 〈A〉 be
the numeral of its code number. This gives us the machinery to represent
self-reference. By appropriate coding, for any formula with one free variable,
A(x), we can construct a formula, A(n), with code number n. Finally, let Σ
be some theory in this language which can define all recursive sets (i.e., sets
whose characteristic functions are recursive). In particular, for every such
set, X, there is a formula, A(x), such that:

if m ∈ X then `Σ A(m)

if m /∈ X then `Σ ¬A(m)

where `Σ is deducibility within Σ.
Tarski’s Theorem Now, suppose that there were a formula of one free

variable, T (x), such that:

Tr A `Σ T (〈A〉)

Tl T (〈A〉) `Σ A

If there were such a thing, we could find a formula, A, with code n, of the
form ¬T (n). For such an A, by Tr and Tl, A and ¬A are inter-deducible
in Σ, and hence Σ is inconsistent. Thus, no consistent theory can represent
its own truth predicate. But if Σ may be inconsistent, this is obviously
no problem. Indeed, we can actually construct inconsistent but non-trivial
theories where truth can be represented in this way. Whether T is itself a
formula expressible in the language of arithmetic depends on Σ. But such a
predicate can always be added to the language (with a suitable extension of
the gödel coding, etc.).

In particular, let Σ be the set of truths in the standard model of arith-
metic. Let T be a new predicate. Then the addition of the two rules of
inference Tr and Tl to Σ gives a theory that is inconsistent but non-trivial.
In this theory no purely arithmetic formula is (provably) inconsistent; indeed,
the formulas that are are all ungrounded, in the sense of Kripke. The proof
is not too difficult, but it is too long to go in to here. We have seen enough
to note that in a paraconsistent context Tarski’s theorem fails. There are
inconsistent but non-trivial theories that contain their own truth predicates.
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Let us move on to Gödel’s theorems. To discuss these, we apply the
Collapsing Lemma again. Let N be the set of sentences of first-order arith-
metic true in the standard model. Let I be any model of N . Let ∼ be an
equivalence relation with a finite number of equivalence classes ≥ 2—and if
successor, addition and multiplication are represented by function symbols,
let ∼ also be a congruence with respect to these. For example, and for the
sake of definiteness in what follows, I might be the standard model itself,
and ∼ the relation:

• x ∼ y iff x, y ≥ j or (x, y < j and x = y)

for some j ≥ 2. If we apply the collapse to I using this relation, we obtain a
finite (non-trivial) model, J , and the Collapsing Lemma tells us that J is a
model of N .

Now, J is a finite model, and so whether or not something holds in it
can be determined in an effective way. (Quantified sentences are, effectively,
finite conjunctions and disjunctions.) Hence its membership is recursive. In
other words, if ΣJ is the set of sentences true in J , ΣJ is decidable. Thus,
the proof predicate of ΣJ is definable in N . That is, there is a predicate of
one free variable, P (x), such that:

if A ∈ ΣJ then I t P 〈A〉

if A /∈ ΣJ then I t ¬P 〈A〉

(I write P 〈A〉 rather than the more cumbersome P (〈A〉).) By the Collapsing
Lemma, this holds of J , too. Thus:

P1 if A ∈ ΣJ then `ΣJ
P 〈A〉

P2 if A /∈ ΣJ then `ΣJ
¬P 〈A〉

Gödel’s First Incompleteness Theorem One way to state the first Incom-
pleteness Theorem is that any complete axiomatisable theory of arithmetic
is inconsistent—where a complete theory here is one that proves, for every
A, either it or its negation. Paraconsistency does not challenge this result. It
is usually taken to follow from this that any complete axiomatisable theory
of arithmetic is trivial. This consequence can now be seen to be false. ΣJ is
decidable, and a fortiori axiomatic; it contains N , and a fortiori is complete;
it is inconsistent, but non-trivial.
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What about the famous undecidable sentence? This is a sentence, A, of
the form ¬P 〈A〉. If A ∈ ΣJ then P 〈A〉 ∈ ΣJ , by P1. If, on the other
hand, A /∈ ΣJ then ¬P 〈A〉 ∈ ΣJ , by P2. But since A /∈ ΣJ , ¬A ∈ ΣJ ;
i.e., ¬¬P 〈A〉 ∈ ΣJ (and so P 〈A〉 ∈ ΣJ). In either case, P 〈A〉 ∧ ¬P 〈A〉
holds in ΣJ . Thus the “undecidable” sentence, as one might expect, turns
out to be decidable, but inconsistently so. In this, it just mirrors the intuitive
paradox concerning the sentence ‘This sentence is unprovable’. Suppose this
is provable; then it is unprovable. Hence it is unprovable. Thus, it is true,
and we have just proved this. The sentence is both provable and unprovable.
We might call this paradox Gödel’s paradox. It is a version of the Knower
paradox.

Gödel’s Second Incompleteness Theorem A standard formulation of the
second Incompleteness Theorem is to the effect that a consistent theory can-
not prove its own consistency. Since we are now dealing with inconsistent
theories, nothing we have done so far affects this.4 However, classically, in-
consistency and triviality go together. So a classically equivalent statement
is to the effect that no non-trivial theory can prove its own non-triviality.
The above construction shows this to be false. Thus, the sentence 0 = 1 is
not in ΣJ . Hence, by P2, ¬P 〈0 = 1〉 is also in ΣJ . (Note, however, that
this does not rule out its negation also being in ΣJ .)

In summary, then, there are certainly ways of stating the limitative results
of classical metamathematics that survive the transition to paraconsistency—
specifically ones where the consistency clause is made explicit. However, the
absolute impossibilities in question fail once we take seriously the possibility
of inconsistent theories. In particular, there are inconsistent but non-trivial
theories which allow all the things ruled out classically.

5 Decidability Revisited: Inconsistent Compu-
tation

So far, we have been concerned with the investigation of theories that may
be inconsistent, theories based on a paraconsistent logic. What of the the-
ory/logic in which our results about these theories are established? As usual

4Though, it should be noted, there are consistent theories of arithmetic based on a
relevant logic—one kind of paraconsistent logic—that can be proved to be consistent in
the theory itself. This insufficiently appreciated result was established by Meyer (1978).
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in the subject, this has been left at a purely informal level. A standard
assumption is that the proofs can be regimented in a formal theory with
an underlying classical logic, such as Zermelo-Fraenkel set theory. And pre-
sumably they can. But suppose that our metatheory is itself inconsistent.
This raises a number of important questions—not least, what an inconsistent
metatheory should be like. This is not the place to go into these questions.5 I
merely want to illustrate the sort of thing that may happen if the metatheory
itself is allowed to be inconsistent.

Let us suppose that we employ in our metatheory an inconsistent arith-
metic. Suppose, indeed, that the set of truths of arithmetic is actually incon-
sistent. This is obviously a much stronger assumption than that a paracon-
sistent logic provides the correct canons of validity. Such a logic allows for the
possibility of inconsistent but non-trivial theories, but this, in itself, does not
entail that any of these inconsistent theories is actually true (dialetheism).

The assumption that true arithmetic is inconsistent is not, in fact, as
outrageous as it may at first seem. We have already seen that there is a
paradox associated with the notion of proof. It is not implausible that in
the true arithmetic this generates inconsistency.6 This does not mean that
we have to reject things that hold in the “standard model” of arithmetic.
We may suppose that all these things are true. It is just that this theory is
not complete—in the sense that more things will be true as well. We have
already seen that there are inconsistent theories of arithmetic that contain
the set of things true in the standard model—and that also encode Gödel’s
paradox. Not all these theories are decidable, but we have seen that some of
them are.7 Let us make the further assumption that true arithmetic is one
such theory—for example, ΣJ of the previous section.

This assumption has consequences that reflect back on some of the limita-
tive results themselves. For example, consider the matter of the decidability
of first-order logic (both classical and paraconsistent). Provability in this
theory can be expressed by a Σ1 sentence. That is, there is a formula of
first-order arithmetic A(x, y) which contains no quantifiers such that for any
formula, B, B is provable iff ∃xA(x, 〈B〉) is true. But now, if arithmetic is
decidable, the truth (and/or falsity) of this sentence can be decided by an
algorithm. (In the case of ΣJ , this is little more than a method for com-

5The shape of an inconsistent set-theoretic metatheory that that has much of the power
of ZF is discussed in Priest (200b).

6For further discussion, see Priest (1987), ch. 3 and Priest (1994).
7For the general structure of inconsistent arithmetics, see Priest (1997) and (2000).
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puting the values of identities and their negation, plus truth tables.) Thus,
first-order logic is itself decidable.

In the same way, any problem that can be represented by a sentence
of first-order arithmetic is decidable. Thus, as another example, consider
the halting problem. Consider an algorithm/computer program with code e,
and some input i. The claim that that program with that input terminates
can be expressed by a sentence of first-order arithmetic, ∃xT1(x, e, i), where
T1(x, y, z) is the one-input Kleene T -predicate. Thus the halting problem is
decidable!

Of course, we must be prepared for the appearance of strange things in
our new landscape. Thus, consider the sentence of first-order arithmetic that
states the Halting Theorem:

¬∃y∀e∀i∃x(T1(x, y, [e, i]) ∧ ∀z(U(x, z) = 0 ≡ ∃wT1(w, e, i)))

where U(x, z) means that z is the output of computation with code x, and
[e, i] is the code of the ordered pair of e and i. Since this holds in the
standard model, it is provable in the arithmetic. Is it the case that there
both is and is not an algorithm that decides whether a computation halts?
Worse, this inconsistency is presumably due to the inconsistent behaviour of
the predicate T1. For the fact that a computation terminates, so that, for
some k, T1(k, e, i) holds, does not rule out the fact that it does not terminate,
¬∃xT1(x, e, i), so that ¬T1(k, e, i) as well. But how can this be? As Shapiro
puts it, in a slightly different context:8

On all accounts ... we have that k is the code of a computation of
program e with input i. This can be verified with a painstaking,
but completely effective check. How can the dialetheist maintain
that k is not the code of such a computation. What does it
mean to say this? Since ¬T1 is a recursive predicate, we can
supposedly verify—at the same time, in almost exactly the same

8Shapiro (200a), p. 14 of ms. Let me comment on a minor error in Shapiro’s paper. He
says (p. 15) that if this contradiction were true, it would be derivable in Peano Arithmetic
(PA) on the ground that all true ∆0 statements are provable in PA. It is not difficult to
see that the proof of the latter fact breaks down in the present context. The proof is by
recursion. Consider the basis case, which concerns identity. Suppose, e.g., that 0 = n is
true. Then (classically), n must be 0, and we know that 0 = 0 is provable in PA. But in
Σj for example, n may be j (> 0), and 0 = j is not provable in PA. Indeed, if the true ∆0

sentences are inconsistent, and PA is consistent, then it is precisely not the case that all
true ∆0 sentences are provable in PA.
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way—that k is not the code of a computation of program e with
input i. How? I must admit that I cannot make anything of this
supposed possibility.

In the passage in question, Shapiro is, in fact, talking of codes of proofs
rather than computations, but the considerations are exactly the same. A
computation that stops and goes on for ever is the same as a proof tableau
that finishes but that goes on forever. I have taken the liberty of modifying
Shapiro’s quote accordingly.

Several points are relevant here. First, Shapiro has considerably over-
stated the case. In a paraconsistent logic, and particularly in the inconsis-
tent models, truth and falsity (i.e., truth of negation) fall apart. If we are
dealing with a decidable theory, different procedures are therefore necessary
to determine the truth of a sentence and its negation. For example, in ΣJ ,
to determine the truth of the equation m = n, we compute to see whether m
and n are less than j; we set the equation to true if they are, or if they are not
and m and n are the same. To determine the falsity of the equation m = n,
we compute to see whether m and n are less than j; we set the equation to
false if they are, or if they are not and m and n are distinct. Hence, there
is no problem about how the algorithm can determine both T1(k, e, i) and
¬T1(k, e, i) to be true.

It remains the case that they both are true. But how can k both be the
code of a computation and not be the code? Again, one must recall that
truth and falsity have fallen apart. T1(k, e, i) records the truth of ks being
the appropriate code. ¬T1(k, e, i) does not record its untruth, but the truth
of ks being distinct from the appropriate code. Let me illustrate. Suppose
that the code is 36, then T1(k, e, i) says, in effect, that k = 36. Similarly,
T1(k, e, i) says, in effect, that ¬k = 36. But this latter sentence does not
rule out k’s being 36: this holds as well.

In the same way, though ∃xT1(x, e, i) may record the existence of a code
of a terminating computation, ¬∃xT1(x, e, i) does not rule out its existence.
It is equivalent to ∀x¬T1(x, e, i), i.e., ¬x = 0 ∧ ¬x = 1 ∧ ...∧¬x = 36 ∧ ...,
which is quite compatible with x being identical to 36. For the same reason,
the truth of a statement that there exists no algorithm to solve the halting
problem does not rule out its existence.

But even if all this is right, what could a physical system be like that re-
alised the inconsistent theory of computation? After all, the Turing machine—
or whatever computational device it is that is described by the inconsistent
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arithmetic system—is an abstract one. How this is realised physically is
another matter. And if the abstract description correctly characterises the
physical device, that device must be such as to render inconsistent statements
such as ∃xT1(x, e, i) and ¬∃xT1(x, e, i) true. How could this be?

It must be remembered that concrete devices are limited in space and
time, break down and misbehave in other ways. A concrete device only ever
instantiates a theoretical device imperfectly. Maybe a physical device could
only approximate the abstract device up to consistency. But why should the
device not behave inconsistently? Perhaps we find this difficult to imagine;
but imagination is a poor index of what is possible. Notoriously, we can
imagine impossible things, whilst many possible things seem hard to imagine.
For example, the idea that one and the same displacement may be a spatial
one, according to one observer, and a temporal one, according to another—as
required by the Special Theory of Relativity—still seems hard to get one’s
head around in any but a mathematical fashion.

And once one moves to a paraconsistent logic, there is no a priori reason
as to why physical reality must be consistent. Nor need this require macro-
objects tables and refrigerators to behave inconsistently. The inconsistency
might be purely at the unobservable level—for example, as with an electron
going through distinct slits simultaneously (as would appear to be the case
in the two-slit experiment in quantum mechanics). It is not even clear that
an inconsistent theoretical computing device needs an inconsistent reality to
encode its workings. Consider quantum computers, for example. These are
devices that work with registers whose states at any time may be superpo-
sitions of classical states. Now, what is it for a machine to stop and not to
stop? Simply for it to have both a terminal symbol and a non-terminal sym-
bol in the appropriate register. (The clock, after all, does not “stop ticking”.
It is just that a terminal symbol, once there, stays there.) Why should these
symbols not occur in a superposed state? If Schrödinger’s cat can be dead
and alive, so can the program be.

These last remarks are all very speculative, and in the current state of
thinking in philosophy and physics, necessarily to. But they should at least
serve as a warning that one cannot dismiss an inconsistent theory of compu-
tation out of hand.
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6 Conclusion
In this lecture I have been looking at the implications of paraconsistency
for the limitative results of metalogic and metamathematics. We have seen
that once one takes the possibility of inconsistent theories seriously, much
of the import of the limitative theorems of classical metamathematics is
undercut. The limitative theorems of classical logic stand in even stronger
forms. However, if one is prepared to countenance an inconsistent metatheory
itself, even some of these may fail—and in a very spectacular way.9
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9Thanks go to Brad Armour-Garb and, especially, Jack Copeland for helpful discussions
about the material in the last section. The possible connection between inconsistent
machines and quantum computing I owe entirely to Jack.
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