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1 Introduction: Geometry and Arithmetic
Arithmetic, geometry and logic are the three great a priori sciences of Kant’s
Critique of Pure Reason. According to Kant, the mind has certain cognitive
structures which, when imposed on our “raw sensations”, produce our expe-
riences. The first two, space and time, are dealt with in the Transcendental
Aesthetic. The third, the categories, is dealt with in the Transcendental An-
alytic. In the case of all three, a certain body of truths holds good in virtue
of these a priori structures; and these constitute the three corresponding sci-
ences; geometry in the case of space, arithmetic in the case of time, and logic
in the case of the categories. As the difference in location in the Critique
indicates, the sciences are not entirely on a par: geometry and arithmetic
are synthetic; logic is analytic. None the less, each, as a science, is certain
and, essentially, complete. This gives us Euclidean geometry, (standard)
arithmetic, and Aristotelian logic.

There are few now who would agree with the Kantian picture of these
three sciences—at least in its entirety. It has disintegrated, not just under the
pressure of philosophical criticism, but under the pressure of developments
in science itself. The science with the clearest modern status is, perhaps,
geometry. There are many geometries; and which one is to be applied to
actual space is an a posteriori matter. Following Frege, many twentieth-
century philosophers have taken arithmetic and logic to be both a priori and
analytic.1 The purpose of this paper is to argue that arithmetic, at least, is

1For example, Wright (1983) shows that standard arithmetic may be derived in second
order logic augmented by “Hume’s Principle”: if X and Y are in one-to-one correspondence
then the number of Xs is the same as the number of Y s. This certainly looks as though
it could be analytic.
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in exactly the same camp as geometry. I will say a few words about logic at
the very end of the paper.

The status of arithmetic has been a contentious issue this century, and
I am hardly the first to argue for the position I have just stated. Quine’s
celebrated arguments in ‘Two Dogmas of Empiricism’ result in the same
conclusion. I think that Quine’s argument does establish the a posteriority
of arithmetic.2 However, it is not my aim to go over this ground here. Neither
do I think that the central philosophical argument I shall employ is very new.
(It is simply a sophisticated version of the old saw: if we kept counting two
rabbits and two rabbits and getting five, arithmetic would have been refuted.)
But I shall build the argument on the existence of relatively recent work on
inconsistent arithmetics. I hope that will give it a novel twist.

I will start by reviewing the modern situation concerning geometry. I will
then discuss what alternative arithmetics look like. Finally, I will argue that
the applicability of an arithmetic is an a posteriori matter.

2 Non-Euclidean Geometry
Until the Nineteenth Century, ‘geometry’ just meant Euclidean geometry;
but in the first part of that century some different geometries were developed.
Initially, these were obtained by Lobachevski and Bolyi simply by negating
one of the postulates of Euclidean geometry in order to try to find a reductio
proof of it. But under Riemann, the subject developed into one of great
generality and sophistication. In particular, he developed a highly elegant
theory concerning the curvature of spaces in various geometries. Whether
non-Euclidean geometries were to be called geometries in strictu sensu might
have been a moot point; after all, they did not describe the structure of physi-
cal space. But they were at least theories about objects called ‘points’, ‘lines’,
etc., whose behaviour bore important analogies to that of the corresponding
objects in Euclidean geometries. Moreover, Riemann realised that it might
well be an empirical question as to which geometry should be applied in
physics.3

Within another 50 years, and even more shocking to Kantian sensibilities,
Riemann had been vindicated. The General Theory of Relativity postulated

2Though, as an attack on analyticity, I think the argument fails. See Priest (1979).
3On the history of non-Euclidean geometry, see Gray (1994); and on Riemann in par-

ticular, see Bell (1953), vol. 2, ch. 26.
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a connection between mass and the curvature of space (or space-time) which
implied that space may have non-zero curvature, and so be non-Euclidean.
Predictions of this theory were borne out by subsequent experimentation,
and the Theory is now generally accepted.

How to understand the status of physical geometry as it emerged from
this affair is still philosophically contentious. The simplest interpretation is
a realist one.4 Geometry in physics is a theory about how certain things in
physical space, i.e., points, lines, etc., behave; and a non-Euclidean geometry
gets it right. The alternative to realism is non-realism, of which there are
many kinds. One is reductionism: talk of geometric points and lines is to be
translated without loss into talk of relationships between physical objects.
This is the view most famously associated with Leibniz,5 but has found few
modern adherents. Another kind of non-realism is instrumentalism.6 Geom-
etry has no descriptive content, literal or reductive. It is merely auxiliary
machinery for the rest of physics. As such, we may choose whatever such
machinery makes life easiest elsewhere; and a non-Euclidean geometry does
just that. One notable version of instrumentalism is that according to which,
once we have chosen a geometry, its claims become true by convention. Such
conventionalism is often associated with the name of Poincaré.7

Whichever of these spins one puts on the ball, the changes in geometry
have forced us to draw a crucial distinction. We must distinguish between
geometries as pure mathematical structures and geometries as applied theo-
ries. As pure mathematical structures, there are many geometries. Each is
perfectly well-defined proof-theoretically or model-theoretically. What holds
in it may be a priori. By contrast, which pure geometry to apply to the
cosmos as a physical geometry is neither a priori nor certain, but is to be
determined by the usual criteria of physical science.

3 Non-Standard Arithmetics
Having spelled out the situation for geometry, let me now address the ques-
tion of whether the situation is the same for arithmetic. There are two issues
to be addressed here: whether there are alternative arithmetics, as there are

4This is endorsed by Nerlich (1976).
5And also Aquinas, Summa Theologia I, quaest. 46.
6This is endorsed in Hinckfuss (1996).
7See Poincaré (1952).

3



alternatively geometries; and whether the question of which one to apply is
a posteriori. I will take the questions in that order.

Normal arithmetic is the set of sentences of the usual first-order language
that are true in the standard model, the natural numbers, 0, 1, 2, ..., as subject
to the usual arithmetic operations. We may take an alternative arithmetic
simply to be one that is inconsistent with this. In other words, we form an
alternative arithmetic by throwing in something false in the standard model.
Naturally, if consistency is to be preserved, other things must be thrown out.
There are two possibilities here.

The first is that we retain all the axioms of Peano Arithmetic, but add
the negation of something independent of Peano Arithmetic but true in the
standard model. We then have a theory that has a classical non-standard
model.8 As a rival arithmetic, such theories are a little disappointing, how-
ever. For, as is well known, any model of such a theory must have an initial
section that is isomorphic to the standard model. In a sense, then, such
theories are not rivals to standard arithmetic, but extensions thereof.

The second, and more radical, way of obtaining a nonstandard arithmetic
is to add something inconsistent with the Peano axioms, and jettison some of
these. (This is the analogue of how non-Euclidean geometries were initially
produced.) In principle, this could produce many different systems, but I
know of only one to be found in the literature. This jettisons the axiom
which says that numbers always have a successor, and adds its negation,
producing a finite arithmetic.9 Although there are such systems, then, there
is no well-worked out theory of their general structure.

A more radical way still of producing a non-standard arithmetic, for which
there is now a general theory, is to drop the consistency requirement. We may
then add the negation of something true in the standard model and jettison
nothing. This situation is novel enough to warrant an extended introduction.

8In this model there may even be solutions to diophantine equations that have no
solution in the standard model—by the solution to Hilbert’s tenth problem—though these
solutions will have no name in the standard language of arithmetic.

9See van Bendegem (1987). Goodstein (1965) gives an arithmetic where a number can
have more than one successor, though it would be more accurate to describe this as an
arithmetic in which there is more than one successor function.
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4 Solving Equations
A driving force behind the development of mathematics can be seen as the
extension of the number system in such a way as to provide solutions to
equations that had no solution. Thus, for example, the equation x + 3 = 2
has no solution in the natural numbers. Negative numbers began to be used
for this purpose around the Fifteenth Century. Or consider the equation x2 =
−1, which has no solution in the domain of real numbers. This occasioned
the introduction of complex numbers a little later. In each case, the old
number system was embedded in a new number system in which hitherto
insoluble equations found roots.

Now consider Boolean equations. A Boolean expression is a term con-
structed from some of an infinite number of variables, p, q, r... by means of
the functors ∧, ∨ and − (complementation). A Boolean equation is simply an
equation between two Boolean expressions. The simplest interpretation for
this language is the two-element Boolean algebra, B2, whose Hasse diagram
is:

>
l
⊥

(∧ is interpreted as meet, ∨ as join and − as order-inversion). Within this
interpretation many Boolean equations have solutions. E.g., the equation
p ∨ p = q is solved by q = > and p = > (or ⊥). But many equations have
no solutions, e.g., p = p. It is natural, then, to extend the algebra to one in
which all equations have solutions. The simplest such one is the algebra D3,
whose Hasse diagram is as follows:

>
l
µ
l
⊥

(where operations are interpreted in the same way; in particular, µ is a
fixed-point for − ). In this structure the equation p = p is solved by p = µ.
More generally, it is not difficult to check that if every variable is assigned µ,
any Boolean expression evaluates to µ. Hence every Boolean equation has a
solution. (The one just given is rather trivial; but in general, there will be
others.)
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The construction here is a special case of a more general one. The three
element algebra just given is a De Morgan algebra with a fixed point for
negation.10 By the same argument as before, every Boolean equation has a
solution in an algebra of this kind. The general result is that every Boolean
algebra can be embedded in such an algebra.11 By Stone’s theorem, every
Boolean algebra can be embedded in a power-set algebra. Hence, it suf-
fices to prove the result for power-set algebras. Let A be any set, and let
〈℘(A),∩,∪,− 〉 be its power set algebra. Let S = {−1, 0, 1} and let F = SA.12

If f,g ∈ F , define the functions f ∧ g, f ∨ g and f as follows:

f ∧ g(x) = min{f(x), g(x)}
f ∨ g(x) = max{f(x), g(x)}

f(x) = −f(x)

It is straightforward to check that 〈F,∧,∨,− 〉 is a De Morgan algebra. (f ≤ g
iff for all x ∈ A, f(x) ≤ g(x).) Also, if fi is the constant function with value
i, then f0 = f0. Finally, it is easy to check that if B ⊆ A, and B̂ is the
following function:

B̂(x) = 1 if x ∈ B
= −1 if x ∈ B − A

then the map B 7→ B̂ is an embedding, as required. (Note also that if, for
some a, A = {a}, so that ℘(A) is B2, then F is D3, with > = f1, µ = f0 and
⊥ = f−1.)

The result is analogous to one of the fundamental theorems of algebra,
that every field can be extended to one over which all equations have solutions
(i.e., all non-constant polynomials have roots), an algebraic closure. (The
algebraic closure of the reals is, of course, the field of complex numbers.)
The above proof shows that any Boolean algebra can be closed in a similar
way.13

10A De Morgan algebra is a structure 〈D,∧,∨,− 〉, where 〈D,∧,∨〉 is a distributive
lattice, and for all a, b ∈ D, a = a and a ≤ b⇒ b ≤ a.

11This proof is due to Greg Restall.
12In general, S could be any subset of the reals containing 0 and closed under −.
13Strictly speaking, the result is not quite the analogue, since the algebra obtained is

not a Boolean algebra. The exact algebraic analogue is that every De Morgan algebra
(and a fortiori every Boolean algebra) can be extended to a De Morgan algebra in which
all equations have solutions. And in fact, the techniques of the proof can be extended to
show this. Every De Morgan algebra is isomorphic to a field of polarities (Dunn (1986),
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5 Models of the Inconsistent
Algebras have many applications. The relevant one in the present context,
is to provide a structure of truth-values for a language. The fact that every
Boolean expression can be evaluated to µ in D3 means that if we take these as
the semantic values of a propositional language, and interpret connectives in
the obvious way, then, provided we take the designated values, ∆, to be those
≥ µ, every sentence is satisfiable; as, more generally, is every set of sentences.
These semantics characterise the paraconsistent logic LP ,14 and the value µ
may be thought of as both true and false. Such a value might seem a rather
odd one. One might be tempted to call it an imaginary truth value, for the
same reason that

√
−1 was called imaginary. But there is nothing really

imaginary about imaginary numbers. Mathematically speaking they are just
as bona fide as real numbers. Indeed, they even have applications in physics.
Leave quantum mechanics out of this; even in classical physics, magnitudes
such as impedance are given by complex numbers. Similarly, mathematically
speaking, there is nothing imaginary about µ. And like imaginary numbers,
µ may even have important applications. For example, it has been argued
that one application for µ is to take it to be the truth value of paradoxical
self-referential sentences.

Propositional LP can be extended to a first order logic in an obvious
fashion. Let L be a first order language. An LP interpretation for L is a
pair, 〈D, d〉, where D is a non-empty domain, d maps each constant into
D, each n-place function symbol into an n-place function on D, and each
n-place predicate to an n-place function from D into D3. For identity, we
require that d(=)(x, y) ∈ ∆ (= {>, µ}) iff x = y. The semantic values of
formulas are assigned in the obvious way (the quantifiers being treated as
the analogues of conjunction and disjunction). An inference is valid iff there
is no interpretation for which all the premises are in ∆, but the conclusion
is not.

It is clear that classical interpretations are special cases of LP interpre-
tations. It follows that LP is a sub-logic of classical logic. It is a proper
sub-logic, since in it α ∧ ¬α 2 β. However, it is to be noted that the logi-

p. 189). The members of such a field are pairs of the form 〈X,Y 〉 where each of X and
Y is a subset of some underlying set, A. The closure is now SA × SA, operations being
defined in the natural way. The rest of the proof is then much as before.

14See, e.g., Priest (1987), ch. 5.
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cal truths of LP are exactly those of classical logic.15 As is to be expected,
every set of first-order sentences has a model. There is always the trivial
model, with a one-element domain, such that for every predicate, P , d(P )
is the constant function with value µ. But in general, there will be many
non-trivial models too. One useful way of constructing these is as follows.

Let I = 〈D, d〉 be any interpretation. Let ∼ be any equivalence relation
on D, that is also a congruence relation on the denotations of the function
symbols in the language (i.e., if g is such a denotation, and di ∼ ei for all 1 ≤
i ≤ n, then g(d1, ..., dn) ∼ g(e1, ..., en)). If d ∈ D let [d] be the equivalence
class of d under ∼. Define the collapsed interpretation, I∼ = 〈D∼, d∼〉, as
follows. D∼ = {[d]; d ∈ D}; if c is a constant, d∼(c) = [d(c)]; if f is an
n-place function symbol, d∼(f)([d1], ..., [dn]) = [d(f)(d1, ..., dn)] (this is well
defined, since ∼ is a congruence relation); and if P is an n-place predicate:

d∼(P )([d1], ...[dn]) = > if ∀e1 ∼ d1...∀en ∼ dn, d(P )(e1, ...en) = >
= ⊥ if ∀e1 ∼ d1...∀en ∼ dn, d(P )(e1, ...en) = ⊥
= µ otherwise

(It is easy to check that d∼(=) is as required for an LP interpretation.)
In effect, the collapsed model identifies members of an equivalence class to
produce a composite object. The predicates true or false of this are exactly
those true of false of all the objects that compose it. In particular, then, if
two members of the class have inconsistent properties the equivalence class
is an inconsistent object.

It is now not difficult to prove the Collapsing Lemma: if the value of
α is in ∆ in I, then it is in ∆ in I∼. First we show that for any term,
t, d∼(t) = d([t]). Applying this fact secures the atomic case. The result is
then proved by induction.16 The Collapsing Lemma assures us that if an
interpretation is a model of some set of sentences, then any interpretation
obtained by collapsing it will also be a model. This allows us to construct
non-trivial models of inconsistent theories. Let us see how by returning to
arithmetic.

15For a proof, see Priest (1987), ch. 5.
16See Priest (2000a).
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6 Inconsistent Arithmetic
Let L be the usual language of first order arithmetic, with function symbols
for successor, addition and multiplication, and one binary predicate, =. Let
N be the natural numbers; let N be the standard model of L; and let A
be the set of sentences true in N . Any model of A, I will call a model of
arithmetic.

Example one. Let n, p ∈ N and p > 0. Define a relation, ∼, on N , thus:

x ∼ y iff (x, y < n and x = y) or (x, y ≥ n and x = y (mod p))

It is easy to check that ∼ is a congruence relation on N . Let N p
n be the model

obtained by collapsing with respect to it. The Collapsing Lemma assures us
that it is a model of arithmetic. It is finite; it has an initial tail of length n
that behaves consistently. The other numbers form a cycle of period p. The
successor graph can be depicted as follows:

0 → 1 → ... → n → n+ 1
↑ ↓

n+ p− 1 ← · · ·

Example two. LetM be any non-standard classical interpretation of A.
Define the relation ∼ as follows:

x ∼ y iff (x, y ∈ N and x = y) or (x, y are non-standard)

Again, it is easy to check that ∼ is an equivalence relation that is also a
congruence on the arithmetic operators. Let NΩ be the model obtained by
collapsing with respect to it. NΩ contains the standard interpretation, plus
an inconsistent “point at infinity”. The successor graph can be depicted as
follows:

0 → 1 → ... Ω
�

Just as the logic LP allows the solution of Boolean equations that do
not have a solution in a Boolean algebra, the inconsistent arithmetics allow
solutions to arithmetic equations that do not have them in the standard
model. (Any equation that has a solution in N , has a solution in any model
of arithmetic.) For example, x = x+ p has solutions in any N p

n , and if s and
t are any non-constant polynomials in x, then s = t has a solution in N 1

n

(namely, n) and NΩ (namely, Ω).17 This fact will be important later.
17On solutions of equations in inconsistent models, see, further, Mortensen (1995).
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7 The General Structure of Models
The foregoing provides all that we need to pursue the philosophical issues
raised, but let me digress for a section to describe the general structure of LP
models of arithmetic (which include, of course, all the classical models).18

Let M = 〈M,d〉 be any model of A, and let us define the ordering on
M in the usual way: x ≤ y iff ∃z x + z = y. If i ∈ M , define N(i) (the
nucleus of i) to be {x ∈ M ; i ≤ x ≤ i}. (In a classical model, N(i) = {i},
but this need not be the case in an inconsistent model. For example, in N p

n

{x;n ≤ x} is a nucleus.) Any two members of a nucleus define the same
nucleus. Now, if N1 and N2 are nuclei, define N1 � N2 iff for some i ∈ N1

and j ∈ N2, i ≤ j. � is a linear ordering.
If i ∈ M , i has period p ∈ M iff i + p = i. (In a classical model every

number has period 0 and only 0. But again, this need not be the case as
N p

n demonstrates.) All members of a nucleus have the same periods. We
may thus speak of the periods of the nucleus itself. If a nucleus has a period
distinct from 0, I will call it proper. If N(i) � N(j) then any period of
N(i) is a period of N(j). Hence any nucleus after a proper nucleus is a
proper nucleus.
If i is in a proper nucleus, its successor, i′ is in the nucleus. i may have more
than one predecessor (as N p

n demonstrates). However, i has a unique prede-
cessor, ′i, in that nucleus. Thus, if i is in a proper nucleus, its chromosome:

...,′′ i,′ i, i, i′, i′′...

is contained in the nucleus. A chromosome is either a finite cycle or is
isomorphic to the integers. Moreover, all the chromosomes in any one nucleus
are either finite cycles of some minimum non-zero period (in which case the
minimum non-zero periods of all subsequent nuclei are divisors of it—not
necessarily proper), or are isomorphic to the integers. (Both sorts of nuclei
are possible.)

Thus, the general structure of a model is a liner sequence of nuclei. There
are three segments (any of which may be empty). The first segment contains
only improper nuclei. The second segment contains proper nuclei with linear
chromosomes. The final segment contains proper nuclei with cyclical chromo-
somes of finite period. A period of any nucleus is a period of any subsequent
nucleus; and in particular, if a nucleus in the third segment has minimum

18I shall not give proofs. These can be found in Priest (200a).
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non-zero period, p, the minimum non-zero period of any subsequent nucleus
is a divisor of p. Thus we might depict the general structure of a model as
follows (where m is a multiple of n):

0, 1, ...

...a→ a′...

...b→ b′...
...

...
d0...di e0...ei
↑ ↓ ↑ ↓ ...
dm−1...d

′
i em−1...e

′
i

...
f0...fi g0...gi
↑ ↓ ↑ ↓ ...
fn−1...f

′
i gn−1...g

′
i

...

An interesting question is that of what orderings the proper nuclei in a
model may have. It is known that they can have the order-type of any ordinal.
But they can also have the order type of the rationals, or of any ordering
that can be embedded in the rationals in a certain continuous fashion. A
general solution to this problem (and many others) is still open.

8 Empirical Applications
Let us now return to the philosophical issues. Each model of arithmetic (or
its theory)—save the standard one—is an alternative pure arithmetic, in the
same sense that there are alternative pure geometries: abstract mathematical
structures dealing with objects (numbers or points) that behave in a way
recognisably similar to the corresponding objects of the standard theories.
Moreover, as we have seen, there are arithmetics which do not even have
initial sections isomorphic to the natural numbers (whilst still verifying all
of standard arithmetic). Thus, the first point of similarity with geometry is
established.19

To establish the second point, it must be shown that which of these
arithmetics one is to apply, is an a posteriori matter. And this may well be
doubted. Could there be applied non-standard arithmetic in the same way
that there is applied non-Euclidean geometry?

I take the answer to be ‘yes’. As I said in the introduction, there are
general Quinean arguments why this is the case, though I do not intend to
discuss these here. Instead, I will attempt to establish the point by telling

19It might, at this point, be suggested that real arithmetic is second order, and that this
is categorical. Hence there is only one arithmetic. The reply is that we can still obtain non-
standard arithmetics by varying the Peano postulates. Moreover, the Collapsing Lemma
applies to second order LP as well, and this can be used to give non-standard second order
paraconsistent arithmetics.
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a story to show how we might come to replace a standard application of
ordinary arithmetic with a different one.20 I do not want to claim that the
situation described is a possibility in any real sense: it is merely a thought
experiment. But if it succeeds it will show the required conceptual possibility.
And this suffices to show that applied arithmetic is a posteriori, in the same
way that applied geometry is.

There are a few such stories already in the literature, notably, those of
Gasking (1940). Gasking was criticised by Castañeda (1959), who argued
that if we use a different arithmetic and preserve our standard practices of
counting, we end up with either a simple change of terminology or inconsis-
tency. I will not discuss whether Castañeda’s arguments work, here. I intend
to finesse them by describing a situation that might motivate an inconsistent
arithmetic, specifically, one of the form N 1

n .
Let us suppose that we come to predict a collision between an enormous

star and a huge planet. Using a standard technique, we compute their masses
as x1 and y1, respectively. Since masses of this kind are, to within experi-
mental error, the sum of the masses of the baryons (protons and neutrons) in
them, it will be convenient to take a unit of measurement according to which
a baryon has mass 1. In effect, therefore, these figures measure the numbers
of baryons in the masses. After the collision, we measure the mass of the
resulting body, and obtain the figure z, where z is much less than x 1 + y1.
Naturally, our results are subject to experimental error. But the difference
is so large that it cannot possibly be explained by this. We check our instru-
ments, suspecting a fault, but cannot find one; we check our computations
for an error, but cannot find one. We have a puzzle. Some days later, we
have the chance to record another collision. We record the masses before the
collision. This time they are x2 and y2. Again, after the collision, the mass
appears to be z (the same as before), less than x2 + y2. The first result was
no aberration. We have an anomaly.

We investigate various ways of solving the anomaly. We might revise the
theories on which our measuring devices depend, but there is no obvious way
of doing this. We could say that some baryons disappeared in the collision;
alternatively, we could suppose that under certain conditions the mass of a

20There are certainly other possible examples. For example, even if arithmetic is not the
form of the intuition of time, as Kant thought, one might tell a story where circumstances
suggested the possibility of calibrating time with a non-standard arithmetic. In virtue of
the cycles in inconsistent arithmetics, stories of time-travel would appear to be particularly
fruitful here.
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baryon decreases. But either of these options seems to amount to a rejection
of the law of conservation of mass(-energy), which would seem to be a rather
unattractive course of action.

Then someone, call them Einquine, fixes on the fact that the resultant
masses of the two collisions were the same in both cases, z. This is odd.
If mass has gone missing, why should this produce the same result in both
cases? An idea occurs to Einquine. Maybe our arithmetic for counting
baryons is wrong.21 Maybe the appropriate arithmetic is N 1

z . For in this
arithmetic x1 +y1 = x2 +y2 = z, and our observations are explained without
having to assume that the mass of baryons has changed, or that any are lost
in the collisions! Einquine hypothesizes that z is a fundamental constant of
the universe, just like the speed of light, or Planck’s constant.

While she is thus hypothesising, reports of the collisions start to come
in from other parts of the galaxy. (The human race had colonised other
planets some centuries before.) These reports all give the masses of the two
new objects as the same, but all are different from each other. Some even
measure them as greater that the sum of their parts. Einquine is about to
give up her hypothesis, when she realises that this result is quite compatible
with it. Even if the observer measures the mass as z′, provided only that
z′ > z then z = z′ in N 1

n , and their results are the same!
But this does leave a problem. Why do observers consistently record

result that differ from each other? Analysing the data, Einquine sees that
values of z (hers included), are related to the distance of the observer from
the collision, d, by the (classical) equation z = z0 + kd (where z0 and k are
constants). In virtue of this, she revises her estimate of the fundamental
constant to z0, and hypothesizes that the effect of an inconsistent mass of
baryons on a measuring device is a function of its distance from the mass.
Further observational reports bear this hypothesis out; and Einquine starts
to consider the mechanism involved in the distance-effect.

We could continue the story indefinitely, but it has gone far enough. For
familiar reasons, there are likely to be theories other than Einquine’s that
could be offered for the data. Some of them might preserve orthodox arith-
metic by jettisoning conservation laws, or by keeping these but varying some
physical auxiliary hypotheses. Others might modify arithmetic in some other,
but consistent, way (which would be just as good for present purposes). An

21We already know that different sorts of fundamental particles satisfy different sorts of
statistics.
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obvious suggestion here is that we might use, instead, a finite consistent
arithmetic, with maximum number z0, which is its own successor. (For all
we have seen of the example so far, this would do just as well.) However,
there might well be reasons that lead us to prefer the inconsistent arithmetic.
Notably, this arithmetic gives us the full resources of standard arithmetic,
whilst the finite arithmetic does not. For example, in the inconsistent arith-
metic it is true that for any prime number there is a greater prime, which
is false in the finite arithmetic. This extra strength might cause us to pre-
fer it. Alternatively, the difference might even occasion different empirical
predictions, which verify the inconsistent arithmetic. Indeed, whatever arith-
metical theories we consider applying, these theories may become more or
less plausible in the light of further experimentation, etc.22

Just as with geometry, the question of the status of the applied arithmetic
is another matter. One might tell a realist story about this. Collections of
physical objects have a certain physical property, namely size; and sizes, to-
gether with the operations on them, have the same objective structure as
the numbers and corresponding operations in the non-standard arithmetic.
Hence, facts about the mathematical structure transfer directly to the phys-
ical structure, and this is why it works. Alternatively, one could tell instru-
mentalist stories of various obvious kinds. For example, Gasking (1940), runs
a conventionalist line on arithmetic that is similar to Poincaré’s on geometry.
But it is not necessary to go into this here: the mainpoint is made. It is quite
possible that we might vary our arithmetic for empirical reasons, even to an
inconsistent one. There can, therefore, be alternative applied arithmetics,
just as there are alternative applied geometries.23

22The revision of arithmetic I have just described is a local one, in that it is only the
counting of baryons that is changed. It would be interesting to speculate on what might
happen which could motivate a global change, i.e., a move to a situation where everything
is counted in the new way.

23Some of the philosophical issues surrounding inconsistent arithmetics, were aired in
Priest (1994). There, it is argued that our ordinary arithmetic might be an inconsistent
one. A critique of this is to be found in Denyer (1995), with replies in Priest (1996).
Denyer’s criticisms are not relevant here. For present purposes, I accept that our ordinary
arithmetic is the usual one. My concern is with inconsistent arithmetics as revisionary.
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9 Non-Standard Logics in Science
It may failry be pointed out that the revision of arithmetic emvisaged in the
previous section is more radical than was the adoption of a non-Euclidean
geometry. For the arithmetic revision requires the adoption of a non-standard
logic, whilst the geometric revision did not.

It might be argued that this shows such revision to be impossible after all.
For logic, it might be thought, cannot be revised. Such an argument, though
would be incorrect. Logic can be revised: it has been revised. The adoption
of Frege/Russell logic early in the 20th century did just that. To give but
one example, traditional logic counts the following inference as valid—it is
an instance of the syllogism Darapti—whilst modern quantification theory
does not:

All men are mortal.
All men are liars.
Some mortals are liars.

There is therefore nothing sacrosanct about logical theories.24

The observation, rather, cuts in the other direction. Science uses mathe-
matics like a multi-national company uses the resources of an under-developed
country. It steps in and helps itself to anything that it wants to use. Thus,
scientists have always been mathematical opportunists. Whether it was in-
finitesimals, imaginary numbers, bizarre functions (like the Dirac δ-function),
it did not matter whether these had an accepted logical foundations. If the
mathematics gave the right answers, science employed it, and everything else
went along for the ride. Thus, if an example of the kind described in the last
section were ever to arise, it would force a revision of logic. (If it had not
already been revised, since there are good and quite independent reasons for
revising our logical theory anyway.) None of the Kantian trilogy—geometry,
arithmetic and logic—is immune from revision under the pressure of scientific
advance.25

24The question of the revision of logical theories is discussed at much greater length in
Priest (200b), which paper partly overlaps with this one.

25An earlier version of this paper was given at the European meeting of the Association
of Symbolic Logic, held at Donostia / San Sebastián, July 1996.
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