
INDEFINITE DESCRIPTIONS

Graham PRIEST

1) Introduction

Unlike ma ny sentences tha t  a re  independent o f  Z.  F. (f o r
example, the  G. C. H. o r  various la rge  card ina l axioms) th e
axiom o f  cho ice i s  obviously t rue .  Consider th e  fo llo win g
reasoning: Given  any non-empty set o f  non-empty sets x ,  i f
we map every member of x, say y, onto a member of y, then
this mapping wi l l  be a choice function on x. (I t  is to ta lly irre -
levant that there is in  general no «effective» wa y of doing this.
Mathematics is not concerned sole ly with  the «effective»).

The problem now arises: can we  formalize the above rea-
soning in a natural way? Clearly, to do this we must have some
formal equivalent of the phrase 'a (particular) x  with  such and
such a property'. In other words we need a theory of indefinite
descriptions, i.e .  th e  indefin ite  a rt icle .  Th e  purpose o f  th is
paper is to  establish such a theory. I  w i l l  attack the problem
by t ry in g  to  establish the  correct semantics f o r such terms.
Inevitably th is w i l l  invo lve  us to  a  certa in extent in  the o ld
problem of how to handle denotationless singular terms.

2) In fo rma l Analysis

Perhaps the  f irs t  po in t  to  consider is  whether such te rms
need special semantics. A f te r a ll Russell's theory o f  descrip-
tions may be seen as a cla im that definite descriptions need no
special semantics since sentences containing definite descrip-
tions cen be paraphrased away in terms of ones not containing
them. I s  i t  possible to  f ind  such a  paraphrase f o r indefin ite
descriptions ? The answer to this is «Almost certainly, no». The
reason is as follows.

As is  we l l  known, i f  we  add Hilbe rt 's E -operator t o  the
language of set theory and add the axiom
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(3y)yEx—> (Ey ) (yx )Gx  ( 1 )

to Z. F., then providing we a llow e -terms to occur in the axiom
schemes o f  Z. F., the A x io m o f  Choice is provable. (See e.g.
Leisenring [1969] p . 105-107). No w Hilbert 's E-symbol behaves
in many ways l ike  the indefin ite art icle . Ce rta in ly (1) is  in -
tu it ive ly correct i f  we  do interpret i t  th is way. Suppose then
that fo r eve ry sentence containing E-terms, we  cou ld  g ive  a
logically equivalent sentence not containing them; and in  such
a way that the paraphrase of (1) were  a logical truth. Then i f
the paraphrase is at a ll reasonable we wou ld  be able to para-
phrase the proof o f the axiom o f  choice in to  a  corresponding
proof i n  Z.  F. Bu t  th is i s  impossible. I n  pa rt icu la r read ing
'( 3 x) (Px A  Or fo r 'P(Ex0)' w i l l  not do.

We are forced then to look fo r semantics o f  indefinite des-
cription. I f  0  is a sentence of some language, le t  us read ',;x0'
as some (particular) x  wh ich  O's,' and le t D be the domain o f
existent objects.

i) A to mic Sentences

Consider f irst the truth value of an atomic sentence 'P(gx1)'.
If the set X  of x's in  D wh ich  satisfy 0  is non-empty, then 'gx0'
denotes one such x  and 'P(;x0)' is true if f  P is true o f that x.
This much  is straightforward. I f  there is no such x,  (i.e. X  is
empty) then we suggest that 'P(gx0)' is false. For if  there is no
man next door, then it  can not be true that a man next door is
a good chess p layer o r a homicidal maniac. Hence i t  is false.

Some have o f  course argued that sentences wh ich  contain
non-denoting te rms a re  ne ithe r t ru e  n o r  fa lse, e .g . Frege,
Strawson in  [1950] and elsewhere. But apart from the fact that
patently, i f  'gx0' does not denote, then 'gx0 does no t  exist' is
true, i t  has been we l l  argued b y  Dummett [1973] pp. 413-420
that ca lling a sentence neither true nor false, ra ther than just
plain false is an empty gesture. To quote from p. 419.

'In order then t o  explain the use of sentences to make
assertions, a ll that has to be appealed to is a twofold clas-
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sification o f sentences ... in to  those wh ich  could be used
to make  a  correct  [i.e. t rue ]  utterance, and  those tha t
would result in  an incorrect [i.e., false] one'.

Now i f  gx1I) does no t  exist then i t  can never be correct to
assert 'P(gx(1:9'. Hence i t  is false.

It is  interesting that Dummett then goes on  (p. 420-429) t o
argue that we  do need to  distinguish two  d ifferent types o f
falsity (loosely, false because non-existent and false because
existent bu t  wro n g ly applied) i n  o rde r t o  p rovide  adequate
truth functional semantics fo r compound sentences. This cla im
I take to  be false. I  hope i t  w i l l  be clear b y  the end o f  the
paper that satisfactory tru th value semantics fo r a ll sentences
can be obtained without such a distinction.

Some people have actua lly cla imed tha t  a tomic sentences
containing non-denoting terms ma y actua lly be true. Hilbert ,
for example, gave an a rb it ra ry denotation in  cases o f  natural
reference failure. This would obviously a llow for some atomic
sentences to be true. However, this is obviously ad hoc.

More interestingly, the  fo llowing  sorts o f  examples wo u ld
seem to show that such sentences can be true.

1) The  alchemists sought the philosopher's stone.
2) Sherlock Holmes lived  in  Baker Street.

However, examples like  this always depend on non-denoting
terms occurring in  non-extensional contexts. No w opaque con-
texts a re  an  interesting bu t  to ta lly separate problem. (Th e y
give rise to problems such as failure of Leibniz' law completely
independently o f  whether o r not the terms invo lved  denote),
and to run it into the problem of non-denotation is to invite con-
fusion.

It may not be clear that the terms in  2) (and others truths of
fiction and mythology) are in  non-extensional contexts. Ho w-
ever, this is not d iff icu lt to demonstrate. 2) is not lite ra lly true,
though ' In  the book b y Conan Doyle, Sherlock Holmes lived
in Ba ke r Street' ce rta in ly is .  Th e  wo rd s ' I n  t h e  b o o k b y
Conan Doyle ' are absolutely necessary, though often omitted.
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Take any wo rk of f ict ion F, where the main character X, is
an actual historical figure who achieves in  the book something,
Y, he failed to do in  real life. Obviously, to suppress the phrase
'In the  wo rk  o f  f ict ion  F '  f ro m ' In  the  wo rk  o f  f ict ion  F,  X
achieved Y' is to invite  a contradiction that does not exist.

Further, such a  phrase puts any te rm in  its scope in to  an
opaque context. Otherwise, we  should have, b y  Leibniz' la w:
in the wo rk of f iction F, the character who d id not achieve Y,
achieved Y. Such a p lot would be d if f icu lt  to  write !

We ma y sum up the discussion o f  th is po in t  b y  saying i f
'polv does no t exist, and 'P' is an ordinary, extensional predi-
cate, 'P(gx(I))' is  false.

ii) Tru th  Functions

Once we  have settled the tru th  va lue o f  atomic sentences,
we may consider the tru th value o f  sentences containing con-
nectives to be determined by ord inary tru th functions. Th is is
certainly the simplest course. I t  ensures that classical proposi-
tional logic holds, and does no great violence to our intuitions.

There is  o n ly one po in t where i t  ma y be argued that th is
gives, in tu it ive ly,  the wrong value, and th is is probably wh y
Dummett feels that o rd inary t ru th  tables are  inadequate.

According to our analysis, if  gx(I) does not exist then -
1 P ( g x ( 1 ) ) 'is true. No w a number o f people have fe lt  that i f  there is no

man next door then 'The man next door is a maniac' and

The man next door is not a maniac' ( 6 )

are both false. I f  we  ask wh y  th is v ie w is held, we  are pro-
bably to ld that f rom 'The man next door is not a maniac' we
can log ica lly infer 'There is a man next door'. Thus (6) can not
be true if  there is no man next door.

We can account fo r th is possib ility in  two  ways. First ly,  i f
we accept that 'not' in  ord inary English can be used as predi-
cate negation as we ll as sentence negation (as argued, e.g. b y
Jackendoff (1972) p .  325 ff.), then we  can in terpre t (6) a s an
atomic sentence with  a  complex predicate. Th is wou ld  make
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the inference correct. Predicate negation is easily formalisable
and I  wi l l  not consider this wa y further.

Alternatively, we  can accept that the 'not' in  (6) is sentence
negation and that

1 P(gx
4)
)

gxcl) exists

is not a log ica lly va lid  inference. (Af te r a ll the more general

V(gx(1))
;x(1) exists

is certa in ly not log ica lly valid).
However, this is not to deny that if  someone utters 'The man

next door is not a maniac' there are grounds fo r believing that
there is a man next door. For people do not usually make such
utterance unless there is a  man next door. Thus

A  utters ' 1
3
( g x ( 1 ) )
.

gx(1) exists

would be a good inductive inference.
Other cases o f  what Strawson [1952] pp. 175-179 ca ll's p re-

supposition could be handled in  a simila r way.
Thus i t  is possible to  defend ou r v ie w that sentences con-

taining connectives may be evaluated with  normal truth tables
in either of these ways.

iii) Quantif ication

The truth value of quantified sentences is simp ly determined
by the normal quantifier semantics over the domain D of exis-
tent entities. The temptation to admit the tru th  of

'There are things which don't exist, e.g. Pegasus' (7)
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(e.g. Resher [1959]) should be fought, if  'There are rea lly means
what it  says. O f  course, we may interpret the quantifier in  (7)
substitutionally and this has additional p lausib ility in  v ie w of
Quine's remarks on quantification in  [1973]. Indeed i t  may be
argued tha t  Meinong's desire  t o  assert tha t  i n  some sense,
obects that do not exist are existent (Meinong [1907]) can be
laid at the door o f  substitutional quantification. But to  fo llow
this wou ld  take us too far a field.

Hence ' ( y ) y  =  gx1:19' w i l l  be true if f  'gvtly denotes. I t  may
therefore conveniently be read as 'gx(I) exists'.

iv) Iden t ity

Finally, a further problem arises with  identity and indefinite
descriptions. When  is 'gx(1) c x 1 p  (1 ) t rue  ? There are many
possible answers. Hilbert 's E operator makes (1) t rue  when (1:0
and 11) are extensionally equivalent. There seems no in tu it ive
justification for this or for any other view except that the on ly
time we have a guarantee that (1) is true, is when (I) and II/ are
the same. This is the condition we wi l l  adopt. Hence, wh ich  of
the objects satisfying (I) is to be denoted by *oar"' w i l l  have to
depend on 0:1) itself. Ho w to  achieve th is w i l l  become clear in
section 3. Perhaps i t  is wo rth  pointing out that our semantics
can be modified in  fa irly obvious ways to accomodate Hilbert's
view or a number of others.

This concludes the  in fo rma l analysis o f  the semantics f o r
indefinite descriptions.

3) We  wil l  now give the formal version of the heuristic seman-
tics o f the previous section.

In what follows, I  wi l l  use the fo llowing schematic variables:

(1), p
,  
0  
f
o
r  
f
o
r
m
u
l
a
s
;  
x
,  
y
,  
z  
f
o
r  
v
a
r
i
a
b
l
e
s
;  
t
i  
f
o
r  
t
e
r
m
s
;  
—
t  
f
o
r  
a

sequence of terms.
Let L be a first order language with  variables v
i
,  i < o ) ,  n - p l a c e

predicates Pin(i<o)) and no constant o r function symbols. Fo r
simplicity, we  w i l l  le t  identity be P .

Let L b e  the language L with  g-terms added, i.e. we add the
following clauses to  the definitions o f  ' te rm' and 'formula '.
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a
.

Let A  be a  structure suitable f o r L. We  w i l l  extend A  to  a

structure suitable fo r L

Notation
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Let the domain of A  be A, and le t V  be the set of variables of
L. g, h  wi l l  be maps from V  into A  and g(x/a) w i l l  denote

g — (x,g (x)) U  { (x,a)

A 0  [g] wi l l  mean that 0  is true in  A  under the valuation of
the free variables given by g.

dp(0) (the  depth o f 0 ) is  the length o f  the longest chain o f
nested g-terms in  0 .  (Hence i f  0  E  L, dp(0) 0  and i f  dp(0)

n, d p ( 1 )
1
, a
( g x 0 ) )  
=  
n  
+  
1 )
.  
T
h
e  
d
e
p
t
h  
o
f  
a  
g
-
t
e
r
m  
o
g
x
c
l
a
»  
i
s  
d
p
(
0
)
.

0 (ity) means 0  with  a ll free occurrences o f  ex» replaced
by gy». (without any change of bound variables). No w le t
it be the set o f choice functions on A,  (71 =  { f ;  f :  P(A)—
{ A }
-
> A  
a
n
d  
f
(
B
)  
E  
B
}
)
.

Let F be the set o f formulas of L .  Then if  Q: V x F  x Av
(i.e. if  x V ,  g E  A
v
,  d C
1  E  F  
t h e n  
S
-
2 ( x ,  
0 ,  
g )  
i s  
a  
c h o
i c e  
f u n
c t i
o n

on A), C2 is suitable iff
i) I f  the variables o f  0  occur amongst x,y1,...,y
r
, a n d  f o r
1 <  i <  n

g (y
i
) 
=  
h
(
y
i
)  
t
h
e
n  
Q
(
x
,
0
,
g
)

ii) I f  y  is distinct from z and y  is free in  0(x/y) then

C2(z,0(x/y),g) C2 (z,0 ,g (xig (y))).

These conditions ensure tha t  Q(x,0,g) depends o n ly  o n  the
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members of g which are relevant to 1 and not on the particular
variable used to denote a  parameter.
Let Q be suitable and le t B < A ,  Q>
, T h e  d o m a i n ,  
B ,  o f  
B

is A.  We  define B ( N g ]  b y  recursion over dp(1).
if  dp(0) =  0 ,  then B O [ g ]  if f  A ( D i g l
Suppose the definition is made for all (I) of depth
The defin it ion f o r depth n + l  i s  itse lf  b y  recursion ove r the
formation of (I).
If i s  atomic, it  is of the form P
i
n ( t i  t
a
) .

For simplicity, le t  us suppose that on ly one te rm t
s i s  o f  d e p t hn and that this is pap.

B 1
3 1
( t
1  
p
a
p
—
t
n
)  
[
g
]  
i
f
f

fx (g) is defined a n d  B  P
n
( t i  Z  t
n
)  [ g ( z i f x
, p  
( g ) ) ]

where z is a variable not occurring in  lp
and fxp (g) is the partia l function defined as fo llows:rt

if  {bEB; B l lp[g(x/b)] i s  non empty

fx (g) =  0 (x,v,g ) {bei3i B  lp [ g ( ' i b ) ]

fx (g) i s  undefined otherwise.

(Thus fx (g) i s  the  interpretation o f  the te rm pcip under the1
1
)

evaluation g.) I f  II) is  e vw,  l ip  o r (  x)tp ,  the  clauses o f  the
definition are as usual. A  lit t le  thought shows that apart f rom
the need fo r E2 to  be suitable, these are the formal equivalent
of the heuristic semantics o f  the previous section. The suita-
b ility conditions arise on ly because we have to deal with  open
sentences and the parameters a re  no t  pa rt  o f  the  language.
Thus we  have the two fo llowing lemmas:
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If the  free variables o f  (I) occur amongst y,  n  and
h(y,) g ( y , )  I  i  n  then

Proof
B [ 9 1  if f  B [ h i .

By induction over the formation of (I).

Corollary

If (I) is closed then B ( I ) [ g ]  f o r a ll g  o r fo r no g; i f  fo r a ll
g then write  B

Lemma 2

I f  y is free in (I)(x/y),
B (14g (xig (y))]  i f f  B 11 )(xlyilg l.

Proof By induction over the formation of O.

This lemma is necessary to validate axiom vi) o f  section four.

4. We  w i l l  now characterize the semantics axiomatically. Let
T be a first order theory in the language L. The fo llowing theory

g
in the language L i s  called T • The axioms of T a re  specified
as fo llows:

i) A n y  theorem of T is an axiom.

ii) Axio ms fo r the predicate calculus o f  L

a) — *  (1p ---> (I))
b) (4 ) --> (1p 0 ) )  --> (((1) 1 p )  -
›  ( 4 )  — *  
0 ) )
c) ( 0
( 1 )  
1
1
0  
(
1
0  
—
>
1
1
) )
)

d) ( V  x) 1  --› (1)(x/y) ( y  not bound in 0 (
1
/ y ) )
e) ( V  x) (0  -
›  ( 4 )  
( V  
x )
l p )  
( x  
n o
t  
i
n  
1
0
)

f) ( V x ) x  =  x
g) x  =  y  (c1 ) (1 )(xty)) ( y  not bound in (I)(x/y))
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Axioms for ;-terms

iii) y  =  t  -->(1
2
7 ( F )  
4 +  P
i
n  
( y ;

iv) P
1
n
( g x
0 j )  
-
+  
(  
3  
x
)
(
1
0

v) (  3 x)(I) (  3 y) y  =  g x0

vi) y  =  gx
,
r1c
,  ( 1 )  
( x /
y )  
( y  
n
o t  
f r
e
e  
i
n  
1 : 1
: 0
( m /
y ) )

The rules of inference of T a re  modus ponens and generaliza-

tion. The fo llowing are theorems of T provided that y does not
occur in  the scope o f a g-term in  8 ,  and a ll the variables free
in gx11) are free in 0(Y/gx4:1)).

a) (  3 y) y =  gx(I)-+ ( 3 x)D (From axiom iv))
b) y  =  gx(I) ( 0  -E+ 0 (
3
1 g x 0 ) )

(By induction ove r the formation o f  O. A x io m i i i )  i s  the
basis).

c) (  3 x)(1) A  ( y)C0  e(Y/gx(1))
(From b) and axiom v))

d) (  3 x)0 e ( x / g x e )
(From b) and axioms v), vi)).

The fa ilu re  o f  b) —  d) f o r general contexts 0 (y ) is  no t  sur-
prising. ;  is not an extensional operator and hence there is no
reason to suppose that gz0 is the same as gzO(Y/gx(D), even i f
y =  gx(I). Finally, we have the fo llowing results.

Theorem I.

If A  T ,  Q is suitable and B < A , Q > ,  B T
;
Proof

The proof is straightforward using Lemmas 1 and 2.

Corollary I.

If A  is any f irst  order structure and Q is suitable then axioms
ii) — vi) hold in < A , Q > .
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If T is consistent then so is T

Corollary 3.

T i s  a conservative extension of T.

Proof
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Let (
I L  
a
n
d  
s
u
p
p
o
s
e  
t
h
a
t  
T
.
4
,
-  
e
l
)

By the completeness of first order logic, we can find a model A
of {14:1)} U T. Let C2 be suitable B =  < A , Q > .  Since dp(11) =  0 ,

B -
1
( 1
c o  
H
e
n
c
e  
b
y  
T
h
e
o
r
e
m  
1
,  
I
S  
(
1
)
.

5. I n  section fou r we  saw that o u r axioms we re  sound. The
axioms are also complete in the fo llowing sense:

For a given theory T, a sentence (I) of L i s  va lid  if  for every
A T  and every suitable g2

B < A , Q >

Theorem 2.

For a given T (130 is a theorem of T
g  i f f  4 : 1 )  i s  
v a l i d .Proof

As we  saw in  the previous section, a ll the provable sentences
are valid. We wil l  prove that if  E' is any set of closed sentences

of L consisten t  with  respect to T  t h e n  E has a model. Th is
implies that a ll va lid  sentences are provable.

So le t E be such a set. Take a countable set A  of new cons-

tant symbols and extend E to a set of closed sentences A of L
U A  such that

i) A  is maxima lly consistent.
ii) A  is satured, i.e. i f  ( 3 x)61)6 A then for some a E A, (Fria ) e A.
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This is done in  the usual way (as in  Henkin [1.949]).
With  every formula o f the fo rm 3  x0 in  A we  associate an

a E A as follows:

so for some a E A

We associate with  0, the a with  the lowest index in some fixed
well ordering of A. We  wi l l  denote this by ax41)

The following lemma is useful.

Lemma 3.

Proof

Since

then

Thus

For every ax ,  0(x/ax )  E A(1)

( y )  (y ; x 0  ---> 0(x/y))E A.

ai =  g x0  E A,0

( x ) 0  ---> ( 3 y)y g x 0  E A.

a — g x0  s A.

ai g x 0  E A.

0(x/ax ) r A since A is maximally consistent.el)

Now we  can construct the model B A .  Since A  D f.„ th is
gives result. Let A
—  =  A  
n  L  
( i . e .  
t h e  
s e n t
e n c e
s  
o
f  
A  
w i
t h  
n
o

c-terms). Then A
—  i s  a  
m a x i m
a l l y  
c o n s i
s t e n t
,  
s a t
u r a
t e d  
s
e
t  
o
f

sentences of L
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If0 , is 0  with  every variable y  free in  0 , replaced b y g(y),
then we can define in  the usual way a model A  with  domain A
for A
—  
s u
c h  
t
h
a
t

A O [ g ]  i f f  e  A
—

(see Henkin [1949]).
We can now define a  We  do th is b y  defining a  series o f

functions C2„(n e (.0) such that R,  is a map from V  x F„ x Av in to
the set of choice functions on A, (where F
r
, i s  t h e  s e t  
o f  f o r m u l a s

of depth n )  such that

i) On, I Q .
ii) Q
n  
i s  
s u
i t
a
b l
e .

iii) I f  Q is any map f rom V x F x  Av in to  a  such that C2 D Q„,
then for every formula 0  of L o f  depth n, and every g,

< A , 0 >  O [ g ]  if f  e  A.
Depth 0

Q
o 
i
s  
t
h
e  
e
m
p
t
y  
f
u
n
c
t
i
o
n
.  
I
f  
d
p
(
0
)  
=  
0  
t
h
e
n  
0  
E  
A
.  
H
e
n
c
e

the result holds by the above.

Depth n +  I

If dp(0) n  Q
n
( x , 0 , g )  
=  Q
, ,

If dp(0) =  n  +  1, then for x  E V, g  E AY, i f

and X is not empty, then

X =  {13 A ;  O
g w
o  
A  }

Q„ 1
( x ,
g )
X  
=  
a
l
t
o  
,

where lp is 0  with  every variable y, free in 0  except x, replaced
by g(y). (This is possible since ( 3 x0)g E A)

If Y  c  A, Y  X  and Y  is non-empty then

Q , „
1  
( x
,
0
, y
)  
Y
r
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(Say the least member of Y in  some fixed we ll ordering of A.)

a) g"2„,
1 i s  
a  
c h
o i
c e  
f u
n c
t i
o n
.  
T
h
e  
o
n
l
y  
i
n
t
e
r
e
s
t
i
n
g  
c
a
s
e  
i
s  
w
h
e
n
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ii) S imila rly  Q(z,(1)(x/y),g) =  Q(z,(121,g(x/g(y)))
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The proof is b y induction over the formation of O. I f  0  is Itp,
x V  lp o r ( 3 x)1p, the resu lt  fo llows f ro m the maxima l consis-
tency and saturation o f  A. Hence we  need o n ly prove i t  fo r
atomic O.
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since axiom iii) e A.
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and

So

Hence the result.

and

Now if we put Q =  U  Q
2
,

f lEw

1 P
r
i
a
( g
X
( 1
I )  
g  
E  
A
.

P n
i
a
( g
x 0
: t )
g
,  
A
.
B < A , Q >

then it is easily checked that Q, is suitable and

B 0 [ g ]  i f f  0 ,  E A.

So if  0  is closed, 0  is 0 ,  and since Q is suitable,

B i f f  0 E A.

Thus the semantics are complete.
We have the fo llowing two corollaries.

Corollary 1.

If 0  is true in  a ll structures o f  the fo rm <  A,Q> then 0  is
provable from axioms ii) — vi).

Coro llary 2.

Compactness: i f  every f in ite  subset of E has a mode l,  then
so does E.

6) Conclusion

Thus we conclude the paper. The above system of indefinite
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descriptions is, I  think, an adequate formalisation of our notion
of the indefinite article. There are two  f ina l comments.

i) W e  have treated identity as an ord inary predicate. Thus
if  •gs x lor does n o t  denote, 'g  x (1) g  x (I)' is  false. Some
people have argued that this is not so. (e.g. Leblanc and
Halperin [1959]). However, the  arguments a re  no t  ve ry
convincing and by fa r the simpler course is the one we
have taken. Nevertheless, the above semantics could be
adapted t o  a l lo w f o r  th is b y  s imp ly  adding a  specia l
clause fo r identity statements in  the defin it ion o f  '

ii) I t  may easily be checked that i f  we add the description
axioms to  Z.F. (and a llo w descriptive terms to  occur in
the Z.F. schemes) then the axiom of choice is indeed pro-
vable.
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